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Abstract

Everyday we are faced with a myriad of tasks to complete, ranging from the most simple to

highly complex. Our ability to complete such tasks is limited by inherent mechanisms which

allow us to focus our attention and perceive the optimal amount of information needed to do

so. As more information becomes available, and as a result of our propensity to multitask,

these cognitive limits are pushed and stretched. In doing so, we often ignore important task

relevant information, or our performance is inhibited. To fully understand the interplay

of these factors, we need to be able to measure and evaluate workload. In this thesis I

investigate the construct of cognitive workload, which is inherently limited by our overall

capacity, through a measure used predominantly in applied driver distraction literature.

From this, I present a body of work that expands upon theoretical underpinnings and new

applications of this measure. In the theoretical stream, I show the usefulness, reliability,

and applicability, of this measure in lab-based scenarios, whilst in the applied stream, I

show three novel uses of the measure in both theoretical and real-world scenarios, as well as

developing analyses applicable to such scenarios. The research in this thesis has implications

and applications across a broad range of research areas, ranging from theoretical, in areas

such as methodological development, to highly applied, in areas such as aviation environment

evaluation.

In the interest of openness and replicability, all data (from student cohorts)1, analysis and

further appendices from this thesis can be found at https://osf.io/ayp6d/.

1RAAF group data (Chapter 6 and 7) is confidential and cannot be shared publicly. The same applies to
data collected from Airbus Helicopters & Hensoldt Sensor Systems (Chapter 5).
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Multitasking has become the norm, where we constantly find ourselves juggling a

number of task demands at once. We have an inherent belief in our own ability to multitask,

and further we assume that we are more efficient when doing more things at once. However,

research has shown that this heuristic is far from true, suggesting that when multitasking, we

are actually rapidly switching our attention between tasks, meaning we increase our margins

of error on both tasks (Adler & Benbunan-Fich, 2012; Pashler, 2000). Our margin for error

may decrease as tasks are practiced and become more automatic, or the error margin may

increase as tasks become more complex or more mental demand is required. Measuring this

margin for error in multitasking is the crux of this thesis.

When performing difficult tasks, greater concentration and mental effort is required

to attend to key information (Gevins, Smith, McEvoy, & Yu, 1997). Similarly, if you perform

multiple simple tasks, increased mental effort is required to switch between tasks effectively

and avoid missing key events (Gopher, Armony, & Greenshpan, 2000; Meyer & Kieras, 1997;

Monsell, 2003). This “mental effort” is often termed cognitive workload (Lee, Young, &

Regan, 2008). Cognitive workload is of significant importance when undertaking any task,

yet is often overlooked or ignored by researchers, designers and policy makers. Cognitive

workload is important to performance as we are limited in the amount of information and

tasks we can attend to, so overloading ourselves with task demands leads to increased error.

We are inherently limited in our capacity to perceive information and operate on

perceptual input. This limited capacity is often referred to as our cognitive capacity (Eidels,

Donkin, Brown, & Heathcote, 2010; Kahneman, 1973). Cognitive scientists have for many

years attempted to explore the limit of human perception and attention, and there are a

myriad of studies and theories exploring conceptual underpinnings of attention, such as the

limits of our perception (Palmer, 1990; T. D. Wickens, 2002), how this perceptual limita-

tion varies from our attentional capacity (A. Treisman & Geffen, 1967), the bottleneck of

information between perception and attention (Pashler, 1984) and a variety of contributing

factors. These factors have been extensively studied within the field of attention, however,

in this thesis, the key assumption which I rely upon is that cognitive capacity is, in some

way, limited.

Furthermore, we are limited in how we respond to incoming information (Meyer &

Kieras, 1997). Although modern day environments allow for greater multitasking behaviour,
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our ability to respond is similarly inherently limited (Pashler, 1994). One main stream

of multitasking literature has indicated that when completing multiple tasks, we do not

purely “multitask” or perform two tasks concurrently, but rather rapidly switch our attention

between tasks (Gopher et al., 2000). Another theory of attention posits the idea of “threaded

cognition” (Salvucci & Taatgen, 2008), where streams of thought for each concurrent task

are “threaded” together by a serial procedure and then executed across available resource

channels. From the task switching account, when task switching occurs, it is apparent

that key information may be missed, or responses may not be effectively executed. This

is the second key tenet of this thesis – not only is cognitive capacity inherently limited,

but our ability to respond to more than one task is also inherently limited (Pashler, 1998).

Furthermore, these factors share key elements; the limits of capacity affect the limits of

responding.

These limiting factors, and the nature of interaction between scenarios, individu-

als and contexts can affect on-task performance. Take for example a driving environment.

The driving environment already requires a great amount of attentional control and may

use the majority of one’s cognitive capacity. Maintaining speed, monitoring for hazards and

constantly adjusting position are just some of the tasks occupying a driver’s attention, with

events occurring frequently and at high speeds. If a driver was to also text on their mobile

phone, or engage in a phone conversation, then task performance could be affected (Strayer

et al., 2013; Strayer & Johnston, 2001). Primarily, in perceiving information from the phone,

they may be limiting the information perceived from the driving environment. Furthermore,

by rapidly switching between the phone and driving, potentially critical responses, such as

braking to an unexpected hazard, or information, such as perceiving a mindless pedestrian,

could be easily missed (Coleman, Turrill, Cooper, & Strayer, 2016; Strayer, Cooper, Turrill,

Coleman, & Hopman, 2017; Strayer, Drews, & Johnston, 2003). Driver distraction research

shares many links with situational awareness literature. Situational awareness relates to per-

ception of the state of an environment and the elements and events within that environment

(Gilson, 1995), and so cognitive workload is a key moderator of situational awareness – as

conditions of high workload may limit situational awareness (Selcon, Taylor, & Koritsas,

1991; Tsang & Vidulich, 2006), but low workload and monotony can also be detrimental to

situational awareness (Hancock & Matthews, 2019). Evidently, balancing workload demands

is key to optimising performance and situational awareness. In the context of situational
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awareness literature, it is clear that understanding workload is essential to safety. Further,

in environments such as aviation or driving, cognitive workload has a key role in situational

awareness – an essential construct for safe operation (C. D. Wickens, 2002a). In order to

understand these effects, a valid and reliable measure of cognitive workload is a necessity.

The overarching structure of this thesis is as follows, with early chapters devoted

to validating a design to test a measure of cognitive workload, and later chapters focusing

on extending that design to answer new theoretical, and practical, research questions. For

convenience to the reader, I limit my following literature review to key concepts reviewed

throughout the thesis, whilst going into further detail on concepts specifically related to

each chapter within that chapter. The following section aims to define the key concepts

used throughout the thesis and form a thread which links together all of the individual

components.

1.1 Defining Key Concepts

Cognitive capacity refers to the overall amount of attentional resources available to

an individual (Townsend &Wenger, 2004b). Any action taken by an individual imposes some

load on overall capacity (Pashler, 2000). The load imposed on cognitive capacity is known

as cognitive workload (C. D. Wickens, 2008). The amount of cognitive workload experienced

may vary between individuals (Hart, 2006; Jaeggi et al., 2007) and is affected by a variety of

factors, however these can be generalised to task difficulty or the number of concurrent tasks

(C. D. Wickens, 2002a). Task difficulty can encompass the complexity of the task, the amount

of mental effort required to complete it or even the amount of distraction the individual

faces. The number of tasks simply relates to how many activities the individual is engaged

in. With these factors in mind, consider that cognitive workload is inherently restricted by

cognitive capacity (Kahneman, 1973). If one’s cognitive workload exceeds their cognitive

capacity, a scenario of “overload” is experienced (Jaeggi et al., 2007; C. D. Wickens, 2008).

Furthermore, in scenarios of extremely low cognitive workload, an individual may be subject

to cognitive “underload” (Lavie, 2010). Both scenarios are detrimental to task performance

– however, cognitive overload is seemingly more detrimental, and consequently is the focus

of the current research, as well as literature in situational awareness (Stanton, Chambers, &
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Piggott, 2001; C. D. Wickens, 2002a), driving environments (Strayer et al., 2013; Strayer &

Johnston, 2001), autonomous driving environments (Biondi et al., 2018; McKerral, Boyce,

& Pammer, 2019), aviation (Berka et al., 2007; Svensson, Angelborg-Thanderez, Sjöberg, &

Olsson, 1997; Wilson, 2002), user-interface (Gross, Bretschneider-Hagemes, Stefan, & Rissler,

2018; Thorpe, Nesbitt, & Eidels, 2019), military (Huttunen, Keränen, Väyrynen, Pääkkönen,

& Leino, 2011) and others.

1.2 Cognitive Capacity

The mental limitation when completing tasks is often referred to as our cognitive

capacity (Eidels, Townsend, Hughes, & Perry, 2015; Townsend & Eidels, 2011). Cognitive

capacity is large enough so that we can process a useful amount of incoming information

from our environment, but restricted as to limit unnecessary stimuli (Eidels et al., 2010).

The consequence of limited cognitive capacity is that if a resource channel amasses more

information than it can handle, it will become overloaded. Generally, this is known as a cog-

nitive bottleneck – where only some information survives in mental processes following an

attentional filter (Borst, Taatgen, & Van Rijn, 2010; Salvucci & Taatgen, 2008). Subsequent

performance of a task in the presence of overload will be negatively impacted according

to Kahneman (1973) due to a loss of task and information awareness. Cognitive capac-

ity limitations have been central in almost all major theories of attention (see Broadbent,

2013; Kahneman, 1973, for examples), perception (see A. M. Treisman & Gelade, 1980, for

examples), and memory (see Baddeley & Hitch, 1974; Miller, 1956, for examples).

1.3 Cognitive Workload

In this thesis, I define Cognitive workload as the cognitive demand faced by an in-

dividual at any single time. Cognitive workload is limited by capacity and defined by the

number and difficulty of the tasks being done at any one time (Kahneman, 1973). It may also

encompass and be affected by the interference between tasks (in a multitasking paradigm)

and distractors from the environment (De Jong, 2010). For example, an easy task with no

distractions would elicit a low level of cognitive workload, whereas someone undertaking
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an easy task in a distracting environment, would likely experience a high cognitive work-

load. Similarly, when completing more difficult tasks or a greater number of tasks, cognitive

workload increases.

There are many common examples throughout diverse literature fields where multi-

tasking, increased difficulty and greater distractions have an impact on cognitive workload.

Strayer et al. (2013) showed that adding the operation span task increased cognitive workload

in a driving task, similar to the effects of talking to extra passengers. Similarly, Strayer et

al. (2017) showed the distracting effects of in-vehicle entertainment systems. In educational

research, Brünken, Steinbacher, Plass, and Leutner (2002) and Brünken, Plass, and Leutner

(2004) showed the workload inducing effects of multi-modal learning stimuli, and in user-

interface literature, the nature of displays can negatively affect workload (Brock, Stroup, &

Ballas, 2002; Gross et al., 2018; Thorpe et al., 2019). We see similar effects on cognitive

workload when the task difficulty is increased rather than the number of tasks increased

(Engström, Larsson, & Larsson, 2013). For example, increasing the difficulty of a n-back

task showed similar effects to increasing the number of tasks on cognitive workload (Mehler,

Reimer, Coughlin, & Dusek, 2009; Strayer, Watson, & Drews, 2011; Young, Hsieh, & Seaman,

2013). These examples highlight both the sensitive nature of cognitive workload and the

range of environments where workload changes may be detrimental to performance.

Similar to high cognitive workload, low cognitive workload can also have detrimen-

tal effects on performance (Hancock & Matthews, 2019). In scenarios where the tasks are

monotonous or when engagement is low, performance may suffer. This notion forms the op-

posite end of the inverse U-shaped arousal curve, where performance is low when workload is

too high or too low, and so balancing task demands here is critical in optimising performance

and avoiding errors.

Errors due to high cognitive workload can be hugely detrimental in some environ-

ments. Take for example driving. There is a vast amount of research that highlights the

negative outcomes of using a mobile phone in the driving environment (Engström, Åberg,

Johansson, & Hammarbäck, 2005; Strayer et al., 2013, 2003; Strayer & Johnston, 2001). The

importance of research investigating driver distraction has been exemplified in policy changes

over the preceding decades, with new laws and regulations shaping the driving environment

(Strayer et al., 2011; Young et al., 2013). As technology continues to develop, it is essential
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to consider the impact of technology on cognitive workload, as technology can significantly

contribute to errors. This research shows prime examples of multitasking behaviour leading

to erroneous and detrimental task performance, and highlights the importance of validating

workload measures. Further, as Feigh, Dorneich, and Hayes (2012) outline in their framework

for developing adaptive interfaces, measuring workload plays a key role in identifying opera-

tor performance decrements in order to create intelligent adaptive interfaces. These adaptive

processes could involve limiting or increasing the level of information available to operators,

moderating task schedules to aid performance or implementing automated processes to assist

with the task.

It is evident that cognitive workload is a vital consideration in driving environments,

and there are many more areas where workload impacts performance, such as aviation and

education. In fact, any field within human factors research, it could be theorized, is subject

to cognitive workload factors (Thorpe et al., 2019). For example, in aviation, pilots com-

plete routine flight checklists before take off and could be easily distracted by extra tasks

or environmental factors. In this environment, cognitive workload needs to be adequately

controlled, and capacity trained, to allow personnel to deal with adverse circumstances. Fur-

ther studies on cognitive workload have shown the importance of workload in areas such as

forklift operation (Gross et al., 2018), helicopter piloting (Gaetan et al., 2015) and air traffic

control (Ahlstrom & Friedman-Berg, 2006; Marek, Karwowski, & Rice, 2010). The majority

of cognitive workload research has tended to focus on distracted driving, and situational

awareness literature. Many of these studies have shown how dual-task cognitive workload

measures can be applied to new environments, with consistent reliability. However, so far

there have been minimal studies conducted in controlled, in–laboratory settings, without

complex paradigms. Typically, this scenario is reversed – where we take well researched, re-

liable and valid designs from the lab and apply them to real world environments. A common

issue arising from this research workflow is that cognitive theories are developed in isolation

from real world contexts. Consequently, when applying these models and theories to real

world environments, we find that they often lack tractability. Here, I take a paradigm that

is valid and reliable in real world settings and has simple, quantifiable, underlying theory,

and use this to develop and test cognitive models and theories which otherwise could not be

advanced in the field. This includes adapting such theory for new purposes and across previ-

ously unexplored domains, as well as developing models which capture holistic performance.
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Evidently, there is great value in developing theory in this fashion, as we are more aware

of the validity and applicability of such measures whilst the underpinning theory remains

simple and tractable. This thesis focuses on dual-task performance as a central (though not

standalone) method of cognitive workload assessment and aims to develop theory from here.

The following section details the dual-task methodology which will be used throughout this

thesis.

1.4 Dual-Tasks

Dual task paradigms allow researchers to measure cognitive workload from primary

tasks which lack clear, quantifiable outcome measures. Generally the additional task is

structured in such a way to not interfere with the main task, and instead maximise the

performance metrics which reflect primary task cognitive workload. These measures reflect

cognitive workload given the limited capacity of attention which restricts performance across

simultaneous tasks.

In the dual-task method of measuring cognitive workload (which will be discussed

in more detail in Chapter 2), participants complete a main task – such as driving – and a

secondary task, which measures the amount of residual capacity is available (Conti, Dlugosch,

Vilimek, Keinath, & Bengler, 2012; C. D. Wickens, 2002a). Performance on both tasks

provides an indication of the participants cognitive workload, as performance in the main

task cannot be sacrificed to perform well in the secondary task. That is, performance in the

secondary task can measure cognitive workload, provided that performance in the primary

task is maintained. Detriment to performance in the secondary task may indicate that

the primary task is highly cognitively loading, and therefore requiring a greater amount of

attentional resources available.

It is also possible that two tasks may require simultaneous (or highly frequent) re-

sponding, consequently leading to responses affected by the psychological refractory period,

rather than workload (Pashler, 1994). The psychological refractory period is the period of

time immediately following a response, where subsequent responses are inhibited momentar-

ily. Tasks that require more frequent responding are often perceived as being more difficult,
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and consequently dual-task measures of workload may be compromised by the psychological

refractory period. In the following chapter (see Chapter 2), I show how dual-task methodol-

ogy has overcome such difficulty, using continuous tasks which require constant responding,

or through using primary tasks which increase workload without requiring simultaneous

responses.

The detection response task (DRT) is the task most commonly used in dual-task

distracted driving paradigms (Castro, Strayer, Matzke, & Heathcote, 2019; Innes, Evans, et

al., 2020), where participants are asked to detect and respond to a salient signal (the full

method of this design will be discussed in Chapter 2). Results from driving studies (for

examples see Strayer et al. (2013), Engström et al. (2005) and Merat and Jamson (2008)),

show an increase in DRT response times with increasing conditions of difficulty. Increased

DRT response times have also been associated with increased distraction such as using mobile

phones (Strayer et al., 2013), using in vehicle information systems (Coleman et al., 2016) and

communicating with smart assistants (Strayer et al., 2019). The DRT methodology follows

the dual-task method, measuring the residual attentional capacity from the main task/s in

an attempt to quantify cognitive workload induced by said task/s. Despite the frequent

responses required by the DRT, there is no evidence that responding is significantly affected

by the psychological refractory period (Thorpe et al., 2019), and further, studies employing

the DRT often use a continuous secondary task (Engström et al., 2013; Stojmenova & Sodnik,

2018), as advocated above.

1.5 Thesis Experiment General Framework

For all experiments in this thesis, I use the DRT methodology in dual-task scenarios.

Further, to overcome the possible interference caused by the psychological refractory period,

I use primary tasks which are free of simultaneous responding (or in the case of Chapter 5,

require continuous responding). Throughout this thesis, I will use one experimental paradigm

for all chapters, with the exclusion of Chapter 5. The DRT-MOT methodology was taken

from Innes, Evans, et al. (2020) (also see Howard, Evans, Innes, Brown, & Eidels, 2020, for a

similar example). Only changes to the Innes, Evans, et al. (2020) Experiment 2 methodology

will be outlined in subsequent method sections.
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1.6 Thesis Overview

Figure 1.1 provides a visual overview of the structure of this thesis. It is well

known that human capacity is limited (Kahneman, 1973), yet in the modern era, we are

pressed to process more information and complete more tasks, more efficiently. Evidence

shows that multitasking comes with an associated cost, often to performance, yet still we

continue to push against, or even ignore our limits (Kahneman, 1973; Pashler, 1994). Despite

our adaptability, and ability to rapidly switch between tasks effectively, it is evident that

multitasking still incurs a cost (Strayer et al., 2013). Evaluating this cost is crucial to the

efficiency and safety of task completion.

To address this need, one focus of the theoretical portion of this thesis is to extend

upon pre-existing measures of cognitive workload. This methodology extension can be seen

in the top third of Figure 1.1. In Chapter 2, I outline a number of cognitive workload

measures which have been proposed and tested. Importantly, the measures tend to agree on

the general workload inducing factors and the magnitude of workload increase. From here,

I outline a dual-task methodology of cognitive workload which I use throughout this thesis.

Chapter 3 provides validation for an in-lab, dual-task method using the DRT (to measure

cognitive workload) and the multiple object tracking task (MOT; to induce workload); a

paradigm I refer to as the “DRT-MOT”. In this chapter I show evidence for: validity and

reliability – across varying DRT signal modalities; construct validity – in comparing to a

validated measure; and external reliability – by comparing to a divergent construct measure.

In essence, Chapters 2 and 3 form a theoretical platform for the thesis, where I establish a

rationale, reliability and validity for the paradigm.

Further, I aim to expand the scope of the DRT beyond distraction evaluation. This

notion can be seen in the middle portion of Figure 1.1, where the research splits into two

streams. In Chapter 4, I highlight the usability of this measure in a lab-based setting and,

in Chapter 5, I show practical applications of this methodology. These chapters show how

environmental factors can affect cognitive workload, and provide an evaluative methodol-

ogy. Chapter 4 evaluates the effects of two types of assistance on cognitive workload and

in Chapter 5, using a similar methodology, I evaluate heads-up display information in a

helicopter simulator. This experiment provides a practical application of DRT methodology
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to an alternate context and to evaluate “usefulness” rather than distraction. These studies

show complimentary results in that one type of information can prove useful to the partic-

ipant, but often at the cost of workload; whilst another type of information may provide

no performance boost at no workload cost. These chapters establish a useful extension of

cognitive workload measurement, by going beyond distraction evaluation.

Chapter 6 shows a further application of dual-task cognitive workload measurement.

In this chapter, I had privileged access to a highly trained group of military personnel who

completed the DRT-MOT paradigm during a selection period for a sought after role. Rather

than only evaluating differences between the military group and a control undergraduate

student group, I use results to distinguish between individuals. In distinguishing between

individuals, not only is the sensitivity of the paradigm shown, but overall cognitive capacity

can be inferred in a novel way. Additionally, validity of the DRT-MOT paradigm is fur-

thered, with results showing no differences between online and in-lab participants, as well as

establishing a benchmark for the military group. This study shows a further use of the DRT

methodology – to infer cognitive capacity as a selection – and provides greater insight into

the cognitive underpinnings of individual performance.

Chapter 7 then uses modelling techniques to extrapolate individual strategy differ-

ences that may underpin results of Chapter 6. Furthermore, using new modelling techniques,

I provide a joint model analysis of the DRT-MOT task. Through the joint model frame-

work, not only do I show differences between conditions of load, but I also show individual

differences and correlations between processes across tasks. These results allow a deeper

understanding of the the cognitive processes that underpin performance differences between

groups and individuals. Using this joint modelling technique is a novel approach to analysis

from cognitive workload tasks, and results emphasise the usefulness of such analysis.

Together, Chapters 1, 2 and 3 form a theoretical stream in a combined review and

validation for existing measures of cognitive workload. Chapters 4, 5, 6 and 7 highlight new

uses of cognitive workload measurement tools – as shown in the middle third of Figure 1.1

– where novel applications and analysis techniques allow for a greater understanding of the

impact of cognitive workload and underpinning latent cognitive processes. This methodology

stream emphasises the usefulness of cognitive workload evaluation for applications further
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to those currently observed and provides measurement and analysis tools within a dual-

task framework for a range of purposes and contexts. This stream represents an important

contribution to the literature in both extending the role of cognitive workload evaluation

and in understanding cognitive workload effects in new environments. Finally, Chapter 8

provides general conclusions concerning the main aims and issues discussed throughout the

thesis.
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There have been a wide variety of attempts to measure and quantify cognitive work-

load during both laboratory (i.e. theoretical) and applied tasks. As outlined in Chapter 1,

cognitive workload intuitively has a large impact on a range of domains, so measurement and

quantification are vital to improve systems, task performance, safety protocols and policy

(Gawron, 2019). These investigated measures generally have associated positives and neg-

atives, which will be elucidated within this chapter. It should be noted though that of the

wide range of research domains there is relatively little convergent evidence of appropriate

measures of workload. The most commonly used method appears to be subjective measures

of workload based on self-report (Hart, 2006). Research has continually shown the limitations

of subjective methods of experimentation, so it is surprising that alternate cognitive workload

measures are relatively under-explored (Paulhus, 1991). Other, more objective, measures of

workload involve evaluating performance, neural activity and psycho-physiological activity.

There are evidently a range of cognitive workload measures, which have all shown

some sensitivity to workload fluctuations, as outlined by Matthews, Reinerman-Jones, Bar-

ber, and Abich IV (2015), however, the convergent validity between these measures is poor.

A further point made in this paper is the criteria for a valid cognitive workload measure,

which should be considered when proposing new measures, or applying existing measures,

as divergent workload measures have strengths and weaknesses across contexts. For a full

review of the criteria of a valid workload measure, see (Matthews et al., 2015). As will

be outlined in the following sections, each measure of cognitive workload has benefits and

drawbacks, which may determine the usability of the measure for given contexts. One major

drawback of many workload measures is that measures of cognitive workload resulting from

a primary task may fail to account for main task performance. Generally we could focus on

primary task performance as an indicator of workload, however, in many applied scenarios

where we wish to assess workload, the primary task is without quantifiable or clear outcome

measures. Secondly, a general limitation of all measures of cognitive workload is that there

is high between-subject variability. This is the case in many psychological research areas,

and is overcome by using within-subjects designs. This form of experimental methodology is

equally valid across all types of workload measures, and should be considered when reading

this chapter. There are few, if any, cognitive workload studies that rely on between-subjects

designs and comparisons.
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The following chapter provides a brief overview of measures of cognitive workload

which have been used previously. These include the subjective questionnaire method of

the NASA task load index (TLX), neural measures such as electroencephalography (EEG)

and functional magnetic resonance imaging (fMRI), bio-metric measures such as galvanic

skin response (GSR) and heart rate, and conclude with dual task measures – including the

detection response task (DRT).

2.1 Subjective Measures

Subjective measures of psychological phenomena have been widely used for decades,

with surveys and questionnaires offering introspective insights into behaviour and reasoning.

In cognitive workload measurement, subjective measures of workload are highly common

and have dominated the literature since the development of the NASA Task Load Index

(TLX) (Hart, 2006). There are several subjective methods of cognitive workload that have

been used throughout the literature, often to measure the impact of a task on cognitive

workload. Loft et al. (2018) however, used the Air Traffic Workload Input Technique to

predict upcoming workload demands – a method which has potential for adaptive interface

design. The most common subject measure of workload however, remains the NASA TLX,

which I outline in the section below.

2.1.1 NASA Task Load Index

The NASA task load index is a short questionnaire requiring participants to rate

their perceived workload across six likert-type scales which ask questions such as, “How much

mental and perceptual activity was required?” (Hart, 2006). The task is easily distributed

with participants responding to a series of scales related to constructs enveloped by “work-

load”, followed by comparisons between these constructs – i.e., “which of these two factors

represents the more important contributor to workload for the task?” (Hart & Staveland,

1988). These sub-scales include mental, physical and temporal demands, as well as frustra-

tion, effort and performance pressures, which can be seen in Figure 2.1 . Hart and Staveland

(1988) proposed the TLX after extensive investigation into the six constructs underpinning
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workload in most tasks. The comparison part of the experiment asks participants to identify

which of the dimensions were most impacted by the task. The TLX assesses workload after

the task has been completed, or at intervals throughout the task. In Hart’s 2006 review, she

notes the wide use of the TLX across a variety of regions and organizations, evidencing this

measure as widely applicable to a range of tasks and settings.

Figure 2.1: NASA TLX overview from Hart (2006, p. 908) showing the separate domains
assessed by the measure and their definitions.

The TLX, as a widely used measure of workload, shows clear strengths in its design.

The whole task takes around ten minutes to complete and can be easily completed and

calculated online. The task is also able to be completed multiple times without any practice

effects. The TLX, like all subjective assessments however, does present several limitations.

Primarily, the TLX relies on self report. This method of reporting has long been shown

to be subject to bias, misunderstanding, interpretation and memory lapses (Paulhus, 1991).

For the TLX, especially in applied uses, social desiriability bias may play a major role in

responding, hence limiting this measure (Randall & Fernandes, 1991). Further, the TLX is

presented after a task has been completed, which means that we only obtain one workload

measurement for that time period and participants are forced to rely on memory when being

questioned on particular parts of the task. This limitation leads to a range of issues, from

memory decay problems, to attribution errors (Schacter, 1999).

Evidently, with the vast amount of research based on the TLX, it appears a valid and

reliable measure of workload, and can be applied quite broadly. Despite these advantages, it
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is evident that issues of self report still persist and make it difficult to compare individuals

or performance across the entirety of the task.

2.2 Physiological Measures

Here I define psycho-physiological measures of cognitive workload as encompass-

ing neural measures, optical measures and cardiovascular measures. Evidently there is a

broad range of measures within this section which can be used to assess cognitive workload.

Psycho-physiological measures are becoming more readily available, with the development

of wearable devices, and in many fields, are the preferred measure of constructs. Psycho-

physiological measures allow for a deeper insight into the physiological underpinnings of a be-

haviour. Compared to self report measures, psycho-physiological measures allow insight into

unobservable, and bias-free, latent variables. For example, Schmidt, Decke, Rasshofer, and

Bullinger (2017) showed that despite participants reporting increased vigilance after three

hours of driving, psycho-physiological measures indicated vigilance was markedly decreased.

In comparison with behavioural measures, psychophysiological measures offer greater depth,

allowing insight into the mechanisms which may contribute to a behaviour across the span of

the experiment. For a full overview of practical applications of psychophysiological measures,

see the review by Lohani, Payne, and Strayer (2019).

2.2.1 Eye Tracking & Pupil Dilation

Eye tracking, and more specifically pupil dilation, methods have been proposed as

valid and reliable forms of cognitive workload measurement (Biondi, Balasingam, & Ayare,

2020; Kahneman, 1973; Lohani et al., 2019). These measures have been predominantly used

in computer science and engineering to provide insights to usability of interfaces (Thorpe

et al., 2019). Eye tracking data is often viewed as a measure of the participants state of

awareness, which can subsequently infer cognitive workload (Biondi et al., 2020). Fixation

time, frequency of fixation change and pupil diameter are all common measures used in

eye tracking, which are a behavioural correlate of underlying attentional resource alloca-

tion and ongoing cognitive processes (Lohani et al., 2019). In studies by Klingner (2010),
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Causse, Peysakhovich, and Fabre (2016) and Krejtz, Duchowski, Niedzielska, Biele, and Kre-

jtz (2018), it was found that participants experiencing high workload had significantly lower

gaze fixation times, as well as lower pupil dilation. These results provide evidence of psycho-

physiological reactions to increased cognitive workload, and further, evidence such measures

as indicators of workload.

Overall, eye tracking and pupil dilation present valid measurement methods of at-

tentional resource allocation, with the ability to model the way in which participants are

shifting, and focusing, their gaze. However, apart from gaze time, there is no clear indicator

of cognitive workload. Frequent attention shifting is used as the main measure of cognitive

workload, however, many other contributing factors can affect results under lower conditions

of workload as well. Further, in pupil dilation studies, it is often difficult to measure the size

of the pupil consistently and even in cases where it can be estimated, pupil dilation can be

affected by other external factors (Lohani et al., 2019). Most importantly however, is that

eye tracking measures only provide a correlate of workload rather than linking to the real

outcome. This limitation will be discussed further below.

2.2.2 Cardiac Measures

Further psycho-physiological indicators of cognitive workload include cardiac mea-

sures such as heart rate variability and blood pressure. Heart rate (and heart rate variability)

is also a measure of the sympathetic nervous system, where increased heart rate is associ-

ated with increased arousal. Another method of analysis is to asses blood pressure, where

increases in systolic pressure are generally associated with increased states of stress (Hughes,

Hancock, Marlow, Stowers, & Salas, 2019).

Physiological measures have been used extensively in measuring cognitive workload,

with increased heart rate and corresponding with increased workload (Hughes et al., 2019;

Reimer & Mehler, 2011). Heart rate measurement allows for precise temporal resolution,

with physiological events closely correlating with task events, and has been used in a variety

of theoretical and applied settings. Reimer and Mehler (2011) and Mehler, Reimer, and Wang

(2011) showed the effectiveness of heart rate measurement as a cognitive workload indicator

in driving studies. Further, Hughes et al. (2019) highlight the sensitivity of cardiac measures
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in response to varying workload conditions. A further measures discussed by (Hughes et

al., 2019) was blood pressure, which was sensitive to increases in cognitive workload, where

blood pressure increased with cognitive workload.

Engström et al. (2005) however, showed that despite differences observed in workload

in other measures of workload, heart rate appeared to be less sensitive, showing no such

difference across conditions. This result speaks to the limits of psycho-physiological measures,

as they not only require expensive equipment which can be difficult to distribute, use and

analyse, but also require very stable environments where effects are generally small. Another

important limitation of physiological measures, which links to a point made earlier about

eye tracking measures, is that they provide only a correlate of workload and do not provide

an indication of the true outcome. For example, two individuals could perform equally well

on a given task, and have even heart rates, yet experience entirely different workload. The

inverse may also be the case, where two individuals may differ in heart rate, yet experience

the same amount of workload. This is a primary limitation to physiological correlates of

workload paradigms.

2.2.3 Galvanic Skin Response

Another psycho-physiological measure which can inform cognitive workload esti-

mates is galvanic skin response (GSR). GSR measures the electrical conductance of the skin

through one or two sensors generally attached to the participants hand or foot. GSR mea-

sures change in the sympathetic nervous system, as increased conductivity is associated with

increased sweating.

Similar to cardiac measures, and closely linked, GSR allows for a physical indicator of

cognitive workload as a measure of the sympathetic nervous system. However, GSR. has less

temporal sensitivity than cardiac measures, with sweat responses activated slightly later than

cardiac responses, however, the two responses are closely linked. There have been several

accounts of GSR as a measure of cognitive workload, as seen in work by Nourbakhsh, Wang,

and Chen (2013), Nourbakhsh, Wang, Chen, and Calvo (2012) and Shi, Ruiz, Taib, Choi,

and Chen (2007) who implemented such measures in laboratory based settings. Further,

Engström et al. (2005) used GSR (and heart rate measures) to study workload in a distracted
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driving task, as discussed above. Similar to heart rate measures, GSR offers only a correlate

of workload, which may not be sensitive to specific task demands, and further, fails to give

insight into primary tasks which lack clearly quantifiable outcome measures.

GSR and heart rate may be excellent measures of physiological arousal, however, in

workload research, where environments may differ between studies and contexts, they appear

practically infeasible. Wearable devices, such as smart watches and heart rate monitors,

have made psycho-physiological measures more accessible in recent times, however, there is

difficulty in accessing and analysing data (Hicks et al., 2019), as well as privacy concerns

over continuous data collection and lack of user control (Motti & Caine, 2015; Thierer, 2015).

As these devices, and data, become more accessible, future research should look to combine

GSR and heart rate data with other workload measures to form a broader understanding of

the construct.

2.3 Neural Measures

Neural measures of cognitive workload have been explored with both electroen-

cephalography (EEG) and functional Magnetic Resonance Imaging (fMRI) techniques show-

ing validity. EEG measures electrical activity at a scalp level. Neural events in higher cortical

areas generate electrical impulses which reach the scalp. EEG methods are able to infer ac-

tive areas of the brain with minimal invasiveness and at a high temporal resolution. fMRI

images are formed using magnetic resonance imaging, where non-invasive magnetic radio

waves detect changes in blood flow. Oxygen rich blood shows a different magnetic resonance

response to blood that is oxygen deficient, and this contrast yields the blood oxygen level

dependent (BOLD) signal. The BOLD contrast looks at changes in hemodynamic response

(blood flow) to different areas of the brain. This increased blood flow is a correlate of neural

activity, which in turn is an indicator of mental activity (Forstmann & Wagenmakers, 2015).

Both methods of neurological assessment have associated advantages and disadvantages, but

both have been widely used in investigating a variety of phenomenon, including cognitive

workload.
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2.3.1 Electroencephalography

In cognitive workload contexts, EEG measures are seen as a correlate of activity

which shows changes in workload from extrastriate cortex activity. In Gevins et al. (1998)

early EEG research, they show an associated increase to frontal theta and decrease to frontal

alpha as workload increased. Gevins et al. (1998) show a 95% accuracy for discrimination

between high and low levels of workload when observing event related potentials and stress

that these changes are likely due to task related difficulty increases. They also proposed

that another contributing factor to these changes could be the increase in proportion of

cortical resources dedicated to the higher workload conditions. In research by Mühl, Jeunet,

and Lotte (2014), which used EEG as a measure of workload, they further this argument,

showing the validity of EEG as a workload measure by comparing it to pre-established

measures in the domain of attentional workload. Additionally, Frey, Daniel, Castet, Hachet,

and Lotte (2016) provide a framework for evaluating user experience using EEG as a measure

of cognitive workload with the goal of reducing workload of interfaces.

Despite the strengths of EEG as a measure of workload, it has several limitations.

Primarily, the equipment has high set up costs, is expensive and highly sensitive, meaning

that experiments need to be conducted in highly controlled environments. Secondly, EEG

equipment is less invasive than fMRI, however, is still more invasive than many other mea-

sures of cognitive workload, which may interfere with experimental interfaces, particularly

in applied settings such as workplaces or driving/aviation simulators. Finally, similar to

physiological measures outlined above, EEG provides merely a correlate of workload, with-

out giving an indication of the actual outcome, i.e. research shows that frontal theta waves

related to level of workload, however these results do not show resulting workload outcomes.

2.3.2 Functional Magnetic Resonance Imaging

fMRI is another frequently used measure of mental activity which can be used to

measure workload. fMRI typically shows high spatial accuracy (within 1mm), yet has lower

temporal accuracy (poorer than 1 second). fMRI can be used as a measure of cognitive

workload and capacity by assessing neural activity changes associated with changes in load

under different conditions in a block of activity. This method not only allows for reasonably
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accurate temporal resolution (as the tasks are blocked), but can also provide evidence to

areas responsible for differences in workload and capacity. As of yet, there are limited

studies using similar methods, which may be due to high experimental costs or the invasive

nature of measurement which makes many common cognitive workload tasks, such as driving,

inaccessible. These testing environments are inaccessible as fMRI relies on participants lying

down in a large scanner and remaining relatively still for an elongated length of time.

fMRI as a form of workload measurement can be useful in understanding which areas

of the brain are active during periods of increased workload. fMRI equipment is less acces-

sible, as it is expensive and data requires complicated cleaning and analysis. Whilst fMRI

technology shows clear benefits to understand areas of the brain responsible for attentional

control, attentional shifts and identifying the neural regions involved in completing complex

tasks, the setup and analysis costs, as well as the nature of the measure as a correlate of

behaviour, means that it still has drawbacks as a widely used cognitive workload measure.

2.3.3 Functional Near Infrared Spectroscopy

Functional near infrared spectroscopy (fNIRS) is another neural measure of cognitive

workload. fNIRS uses near infrared spectroscopy (an optimal imaging technique) to measure

changes in hemoglobin levels in the brain. This technique is similar to fMRI, however, has

lower spatial resolution, relying on measurements from the scalp. fNIRS is often combined

with other neural measures (such as EEG) to evaluate neural and hemodynamic responses

to given stimuli (Aghajani, Garbey, & Omurtag, 2017). In workload measurement, similar

to other neural workload measures, changes in the frontal cortex (such as increased hemo-

dynamic levels) are related to changes in cognitive workload (Causse, Chua, Peysakhovich,

Del Campo, & Matton, 2017; Herff et al., 2014). Although fNIRS techniques have proven

useful in evaluating workload, the measure is limited in similar ways as EEG and fMRI.

fNIRS is promising for future research in cognitive workload measurement, as it is tem-

porally accurate, less invasive and more accessible than other neural measures – however,

provides less depth to assessment. Furthermore, similar to the limitations outlined above,

fNIRS provides only a correlate of performance, rather than assessing cognitive workload

outcomes.
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2.4 Dual Task Measures

Dual task measures of cognitive workload are based on the theory of a limited

capacity system. Dual task paradigms specify that an individual completes a main task (or

possibly several main tasks) and a secondary task. The main task/s requires a portion of the

individuals cognitive capacity to be occupied. The residual capacity is then dedicated to the

secondary task. Therefore, if workload demands from the main task are high, performance

on the secondary task (the cognitive workload measure) would suffer. Similarly, if main task

demands are low, a greater amount of attention can be allocated to the secondary task.

The secondary task in a dual task measure is generally simple, requiring minimal

attention and minimal response effort, to ensure that the secondary task does not impact

main task performance. The primary example of cognitive workload measurement in a

dual task framework is the Detection Response Task (ISO:17488, 2016). The DRT requires

participants to detect a salient signal and respond by pressing a button as fast as possible.

If the main task has high workload demands, response times will be inhibited (Strayer et al.,

2013), consequently providing a simple measure of residual capacity. Dual task measures have

shown effectiveness at quantifying cognitive workload in a variety of settings (Engström et al.,

2005; Stojmenova & Sodnik, 2018; Strayer et al., 2013). With a simple procedure, minimal

task demands/distraction, minimal equipment costs, quantitative data and high sensitivity to

workload changes (Stojmenova, Jakus, & Sodnik, 2017), dual task measures such as the DRT

are able to be used in a variety of contexts to answer a range of cognitive workload questions.

Similar to other cognitive workload measures; dual tasks do have several limitations. These

limitations include the ability to trade off performance between tasks (however this can be

resolved through analysis of the main task) and a discontinuous measure of workload as

signals occur at discrete intervals. This limitation is minimized as responses are required

frequently (every three to five seconds in the DRT), and, by using a blocked design (similar

to fMRI studies), can be further reduced.

Whilst researchers could choose to focus purely on main task performance, there are

shortcomings which can be addressed through dual-task methods. Primary task performance

typically decreases with increased demand, or workload. The additional “workload” task is

useful however, when the main task cannot provide reliable performance measures. For
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example, performance may fluctuate throughout a driving scenario, however, it is difficult

to quantify driving performance. Similarly, many tasks may only provide a single outcome

measure, which can be difficult to interpret over a long block of activity where workload may

fluctuate throughout the block. Including a secondary task which is simple and provides

a constant and reliable measure of workload allows inferences in such tasks to be possible.

Further, including a dual task allows us to compare workload across contexts and tasks where

the performance metrics may be diverse.

Overall, dual-task measures present one of the most accessible forms of direct cog-

nitive workload measurement. Dual-task measures may not account for the architecture

producing behaviour (as neural measures do), nor do they account for sympathetic effects

(as physiological measures do), however, it could be argued that in order to evaluate cognitive

workload, these factors are not vital to understanding the underlying workload induced in

the context of interest. Finally, unlike neural and physiological measures discussed, dual-task

measures provide more than a correlate of workload, instead, results highlight the behavioural

outcomes of varying levels of cognitive workload.

2.5 Detection Response Task

Detection response tasks were first presented as workload measures in 1999 by

Van Winsum, Herland, and Martens (1999) in their paper “The effects of speech versus

tactile driver support messages on workload, driver behaviours and user acceptance”. The

authors termed the task the “peripheral detection task” (PDT), where participants were

required to detect and respond to a signal in the periphery. The DRT terminology was later

introduced by Engström et al. (2005) and shares many close similarities with the PDT. The

DRT was standardized under ISO:17488 (2016) in an attempt to unify the various dual-task

cognitive workload measures which are methodologically similar to the DRT (such as the

PDT as in Van Winsum et al. (1999) and tactile detection task in Diels (2011)).

The DRT operates as an additional task in dual task paradigms. Resources required

to attend to the additional task – the DRT – are limited to the residual attentional resources

available. As a result, the DRT is an indicator of residual capacity. The DRT imposes a
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minor demand on resources (Biondi et al., 2020) due to its simple nature, however, results

capture the availability of residual resources.

If an individual is doing a highly complex task, they will have limited residual

resources. For example, in a driving scenario (a highly complex task), individuals residual

resources are limited, consequently making it difficult to complete tasks such as remembering

words or completing simple maths problems (Strayer, Turrill, et al., 2015). In a simultaneous

DRT trial of the present paradigm, the individual will have less resources to detect and then

respond to the signal. Consequently, DRT responses will be slower on average. Alternatively,

an individual who is completing a simple task, with minimal effort, would have a large amount

of resources leftover. Here, the individual would have a greater amount of resources available

to detect and respond to a DRT signal, meaning that responses would be faster. These trends

are consistently shown in workload research, and provide a key result throughout this thesis

– as shown in Figure 2.2; slow responses correspond with high workload, fast responses

correspond with low workload.

Figure 2.2: Theoretical results for a DRT study. In conditions of high workload, par-
ticipants average DRT response times are slower. In conditions of low workload, response
times are faster.

2.5.1 Driving and the DRT

Van Winsum et al. (1999) showed the effects of increased workload in distracted
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driving scenarios as a first pass at using quantitative workload measures in driving envi-

ronments. Their task focused on assessing workload increases induced by difficult driving

scenarios and assistance messages. The driver assistance messages were given as warnings via

speech or tactile modes. The researchers found that workload increased with more difficult

driving scenarios (for example response times were low on a straight road and higher at stop

signs or when forced to brake suddenly). Furthermore Van Winsum et al. (1999) showed

that misses to the PDT also increased in these more difficult scenarios – again indicating

an increased workload. The researchers showed the sensitivity of the PDT as a selective

attention measure with response times increasing during, and after, the warning systems

had been activated. This finding is a prevalent theme in cognitive workload measurement

literature, as although the system enabled safer driving, it had a trade-off with cognitive

workload. That is, to process and utilise the system, required more cognitive resources, but

ultimately lead to safer driving.

Similar driver distraction research has been undertaken by David Strayer and col-

leagues from the Applied Cognition Laboratory at the University of Utah. In their initial

papers, Strayer and Johnston (2001) used a braking task, which measured the response times

of drivers to simulated traffic signals. The researchers showed that in multitasking scenarios

(such as using a mobile phone), participants had significantly slower reaction times and were

much more likely to miss the simulated traffic signals. Similarly, in Strayer et al. (2003), the

researchers showed the differences in detection ability between cell-phone conversations in

comparison with radio broadcasts or audio-books. Results indicated that participants again

had a greater probability of missing simulated traffic signals and slower response times. Fur-

ther studies investigated differences between older drivers and younger drivers in relation

to their dual-tasking ability (Drews, Pasupathi, & Strayer, 2008; Strayer & Drew, 2004),

and differences between drunk drivers and distracted drivers (Strayer, Drews, & Crouch,

2006). These brake response time studies have been highly influential in policy change re-

garding cell-phone use, and provided a deep insight into driver distraction, however, they

only accounted for “workload” at critical periods (i.e. stopping at traffic signals). It is clear

however, that results could have been impacted by a task switching cost, rather than an

overall workload increase. A more effective measurement of the workload induced by cell-

phone interaction should also account for time when the driver was not engaged in a critical

driving behaviour, such as braking. The DRT is able to do this.
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Strayer et al. (2013) introduced the DRT to their driver distraction research. Since

then, the DRT has been used successfully across a variety of distracted driving studies.

Using a baseline technique, the Applied Cognition Lab has developed a method of comparing

distractions in the automobile setting. This technique has been used to account for the effects

of a variety of distractions on driving including talking on the phone (Strayer et al., 2013),

interacting with in vehicle information systems (Strayer et al., 2019) and interacting with

smart assistants (Strayer et al., 2017). This research has been crucial for driver safety and

policy development, and highlights the usefulness and applicability of the DRT.

Further, on the usability of the DRT, there are several examples of research using

varied DRT signal modalities, including visual, tactile and auditory, to be usable in alternate

environments. For example, in some environments, a tactile stimuli would be less distracting

and intrusive than a visual signal. There have been attempts to differentiate these modalities

(see Conti et al. (2012); Merat and Jamson (2008); Stojmenova et al. (2017) for full reviews),

but all appear to be sensitive to cognitive workload changes. Recently, Biondi et al. (2020)

showed that using the DRT in psychological experiments does add minor workload to the user

(the researchers measured this impact using pupil dilation measures in a between subjects

n-back task). Additional workload added from the DRT is both intuitive and necessary,

as adding another task should increase the workload of a participant, however, adding an

extra task enables us to understand the magnitude of alternate workload inducing factors –

such as the additional workload from texting whilst driving, or the impact of increased task

difficulty on workload.

Aside from driving literature, there is little evidence of DRT use in alternate settings

(Innes, Evans, et al., 2020). Such a simple and applicable task could be easily applied to a

variety of other settings to enable a deeper view into the underpinnings of task performance,

distraction and cognitive workload – my thesis aims to address this in part. The following

section details some of the studies which validate the use of the DRT outside of driving

contexts, for example in lab settings, such as task switching exercises, and alternate applied

settings, such as helicopters and forklifts, findings of which are important for assumptions I

make throughout this thesis. The majority of these studies aim to answer applied questions

only.
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2.5.2 Using the DRT in Alternate Settings

ISO:17488 (2016) for DRT outlines methods of the DRT in evaluating driver cogni-

tive workload. These methods are closely followed throughout this thesis when referring to

DRT methodology. The only significant deviation is that all thesis methodology is unrelated

to driving paradigms. The DRT methodology requires (at minimum) a dual-task paradigm,

where the DRT is an additional task. Consequently, participants attention is focused on the

main task – the task which occupies the majority of cognitive workload. Task preference can

be specified to participants (for example “performance in the driving task is most important

in the current scenario”), however is often ignored by researchers and is shown to have little

effect on results (Conti, Dlugosch, & Bengler, 2014). ISO:17488 (2016) specifies that the

experimental task is the driving task, however, a limited number of other experiments have

used DRT dual-task paradigms in alternate settings (Biondi et al., 2020; Engström et al.,

2013; Gross et al., 2018; Innes, Howard, et al., 2020; Thorpe et al., 2019; Xie et al., 2016;

Young et al., 2013). To test differences between conditions, these tasks must remain engaging

and difficult in order to observe workload changes.

The studies outlined above all highlight the usefulness of the DRT methodology

outside of driving literature. In a closely related context, Gross et al. (2018) used the

DRT to measure the impact of alternate monitors on cognitive workload in forklifts, with

results indicating the sensitivity of the DRT. Similarly, Thorpe et al. (2019) used the DRT

as a cognitive workload measurement tool in relation to gaming user interfaces in order to

assess differences in usability. Thorpe et al.’s (2019) methodology used the DRT in a tightly

controlled environment, with a simple cognitive task - a tracking task. Similar experiments

which aimed to use the DRT in controlled laboratory settings include studies by Engström

et al. (2013) and Young et al. (2013). These examples used an n-back task rather than

a driving paradigm to manipulate workload demands. They showed that the DRT was

sensitive to the difficulty of the task, with greater n-back corresponding with increased DRT

response times. Similarly, Biondi et al. (2020) used an n-back task and pupil diameter

measures, to evaluate the effect of the presence of the DRT on workload. Finally, Xie et

al. (2016) highlighted the usefulness of the DRT in assessing group workload, by evaluating

DRT results for individuals within a group setting. Xie et al.’s (2016) group experiment took

place inside a military special vehicles context, however, not all participants were completing
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the driving task, but rather a variety of tasks related to the specified mission. These results

further highlight the usefulness of the DRT at not only quantifying individual workload, but

extending the paradigm to a group context to evaluate interpersonal factors on cognitive

workload.
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One major goal of this thesis is to extend the applications of the DRT. In Chapter 2,

I show a novel way of applying the DRT to measure cognitive workload induced by the

Multiple Object Tracking Task (MOT). Further, I show how this task can also be distributed

online. Previously, DRT experiments have been for the most part conducted in driving

environments, such as simulators or controlled driving course experiments. Prior to extending

the applications of the DRT within the DRT-MOT task framework, it is important to evaluate

the task under different experimental manipulations to provide evidence for the reliability,

and validity, of the DRT in contexts outside of typical driving scenarios. This is important,

both in terms of this thesis and in the scope of broader literature, to portray the usability and

reliability of the DRT, where in some contexts, the interrogated task may be less cognitively

demanding and so workload ceiling may not be reached. This could impact the sensitivity

of the measure.

In this chapter, I explain the details of an experiment which evaluated DRT signal

modality. Two other experiments were also conducted which evaluated the DRT in reference

to another measure of cognitive workload (the NASA TLX) and against a measure of an

alternate construct – vigilance (the PVT) 1. These subsequent experiments are limited to

simple methodology and overall trends to restrict the length of this chapter. From the

experiments in this chapter, I aim to show both the reliability of the DRT as a cognitive

workload measure and the sensitivity of the measure to workload change.

3.1 Experiment 1: DRT Signal Modality Comparison

Research has shown our cognitive capacity limitations are shared across various

modality channels (Diederich & Colonius, 2004). We are able to focus our attention on one

modality source, however, this does not increase our overall capacity. For example, if we

focus only on our auditory channel, we are still limited to listening to only one conversa-

tion. Many cognitive tasks, such as n-back and operation span tasks are presented through

various modalities (usually visual or auditory). Despite different stimulus presentations and

1Results (in the form of JASP outputs) from these experiments can be found online at https://osf.io/
ayp6d/
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associated processing speeds relevant to each modality, trends hold across these conditions

(Stojmenova et al., 2017).

Distracted driving studies which use the DRT as a form of cognitive workload mea-

surement have employed several signal modality presentations (Cooper, Castro, & Strayer,

2016; Stojmenova et al., 2017; Stojmenova & Sodnik, 2018). This signal could be tactile –

a vibration elicited by a vibration motor attached to the skin; auditory – a salient sound

elicited in the display; or visual – a salient light source delivered in the periphery or within

the environment. As outlined in Chapter 2, increasing workload leads to increased response

times. However, altering signal modality can also effect response times. Stojmenova et al.

(2017) and Engström et al. (2005) showed differences in response times across DRT signals

(in Engström et al. (2005), the TDT and PDT - see Chapter 2 - were evaluated). Both stud-

ies found that all signal modality presentations were sensitive to workload changes. Trends

showed that the tactile signal was responded to fastest in some conditions, and visual sig-

nals appeared the most sensitive to change between conditions, however, results were not

conclusive.

Of the studies which use the DRT, the majority of these are in practical and applied

scenarios, such as driving studies (Stojmenova et al., 2017; Stojmenova & Sodnik, 2018).

Importantly, in any DRT experiment, the modality of the signal should be sensible given the

task. For example, in Strayer et al. (2013), drivers were asked to engage in conversations

with a passenger or via a hands free mobile phone. In this design, using an auditory DRT

signal may confound the affects of the incoming conversation. Instead, researchers used a

visual DRT signal to limit any confounding effects.

In Innes, Evans, et al. (2020), the authors show differences between two versions of

the DRT-MOT paradigm. In the initial experiment, the DRT signal was delivered through

the tactile modality, whereas the secondary study used a visual signal. Results showed that

the DRT was sensitive to workload changes induced by varying MOT difficulty, however, it

was also noted that the visual signal may have been distracting for participants. In Innes,

Evans, et al. (2020), a difference in response times was observed between the visual and the

tactile conditions, with visual having much slower response times. The paper is limited as

these differences could not be analyzed due to different samples of participants, whose tasks
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differed slightly. These differences may be the result of a preference for tactile signal, or may

be due to inhibited processing when the DRT and MOT signals were both visual.

The current experimental procedure was based on Innes, Evans, et al. (2020) DRT-

MOT methodology, where the MOT is used as a controlled manipulator of cognitive workload

and the DRT is used as the cognitive workload measure. DRT response times generally

increase as cognitive workload increases, essentially indexing workload (Cooper et al., 2016;

Stojmenova & Sodnik, 2018; Strayer et al., 2013). In easy conditions, DRT response times

are lower, and in hard conditions, response times increase. This phenomena can be thought

of as the amount of attention and concentration given to a task dependent on the task

difficulty, where your cognitive resources “run out” as the task becomes harder or requires

more concentration. The DRT captures this depletion of resources in the addition of a simple

stimulus detection task.

In typical studies of workload using DRT measures, the simultaneous task is gener-

ally highly complex (such as driving) yet often limited in control (due to this complexity).

The MOT used in the current design differs from these prior studies in that it is less cog-

nitively, and physically, demanding than driving – requiring only visual tracking of stimuli

and button press responses. Furthermore, the MOT has shorter periods of activity and is

able to be tightly controlled – as the number of dots to track indexes the task difficulty and

all other experimental factors are kept constant (such as the speed of the motion, the size

of the objects and the length of tracking time). The current experiment aimed to show the

sensitivity of the DRT to workload change in these tightly controlled tasks synonymous with

cognitive psychology research. Specifically, the MOT presents a highly repetitive task where

no responding is required during the tracking (workload) period, which is divergent from

the typical DRT-driving literature. Further, it is important to evaluate varying stimulus

modality presentations across this task, to establish reliability in online distribution, where

the use of a physical DRT is not possible. Evidently, two main effects should be observed,

similar to results from Innes, Evans, et al. (2020): MOT performance decreases with dif-

ficulty – showing that participants find the task more difficult with more objects to track;

and DRT performance decreases with difficulty – showing that as participants work harder

in the MOT, their attention is detracted from the DRT, causing performance to drop. This

co-occurring result pattern is common in DRT designs and throughout this thesis.
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Following Innes, Evans, et al. (2020), I aimed to investigate the differences in both

DRT and MOT results given alternate DRT modality signal presentations within DRT-MOT

paradigm. Furthermore, I aimed to investigate the differences between the “physical” DRT

signal (the light or vibration) and the “virtual” signal (a visual signal given on screen along-

side the cognitive task), to test the reliability of the online version of the task. Given the

results of previous literature, it was hypothesized that all DRT signal modality presentations

would be sensitive to changes in cognitive workload, with response times increasing as MOT

difficulty increased. Secondly, it was hypothesized that there would be a difference in DRT

response times between DRT signal modality, with tactile predicted fastest and virtual slow-

est in line with previous research from Engström et al. (2013) and Stojmenova et al. (2017).

Finally, it was hypothesized that DRT signal modality would have no affect on MOT results.

3.2 Method

3.2.1 Participants

Participants were 22 undergraduate psychology students of the University of New-

castle who were reimbursed with course credit. All participants had normal or corrected-to-

normal vision and were able to read English. Participants completed the study in lab. A total

of 4 participants were removed from the analysis due to missing data (i.e. not completing

the experiment) or technical faults (two online files did not save data).

3.2.2 Tasks

The method was based on Experiment 2 of Innes, Evans, et al. (2020), with differ-

ences only in the DRT signal modality presentation and overarching design. Participants

were required to complete two simultaneous tasks; the MOT task and the DRT. The design

was a 3x2 within subjects design. No instructions were given to specify the preference of

DRT or MOT tasks to participants (see Conti et al., 2012, for a full review of DRT instruc-

tions). The MOT had two levels of difficulty, indexed by the amount of dots to track (2
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or 4). The general MOT administration was identical to that used in Innes, Evans, et al.

(2020).

The DRT generally adhered to ISO standardization (ISO:17488, 2016). In the DRT,

there were three signal types’ visual, tactile and virtual. Participants were required to

respond to a short signal (1 second), which could be tactile, visual or virtual. The tactile

signal was a vibration elicited by a motor attached to the participants shoulder - the same as

in Experiment 1 of Innes, Evans, et al. (2020). The visual signal was a red LED light which

was attached to the participants head via a velcro strap so that it was seen in the periphery,

as used in (Strayer et al., 2013). The virtual signal was included in the MOT display. For

the virtual condition, a red frame appeared around the display, similarly following ISO:17488

(2016) standards. This signal was different from Innes, Evans, et al. (2020), as the signal

was much larger and encompassed the MOT motion area (as seen in Figure 3.1), enabling

participants to maintain focus on the tracking area for the MOT.

Figure 3.1: Screenshot of the virtual DRT signal condition. The signal encompasses the
multiple object tracking area, so that an object’s motion is reflected before reaching any
area where the frame could appear.

Participants responded to the signal in the tactile and visual conditions by pressing

a button attached to the index finger of their non-dominant hand. In the virtual condition,

participants pressed the space bar to respond to the stimulus onset. The DRT signal lasted

for 1 second, unless the participant responded before the onset time had elapsed. DRT signal

onset occurred in cycles, with the interval between cycles randomly distributed between 3 and

5 seconds. Participants were instructed to respond as quickly as possible to the signal before
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the next signal occurred. Responses made before the next occurrence of a signal were deemed

“hits” and a failure to respond before the next signal, or within 2.5 seconds, was deemed a

“miss”. Second (and subsequent) responses entered before the onset of the next signal were

deemed “false alarms”, however, as per (ISO:17488, 2016), these were not included in the

analysis. Response times were measured as the time taken to respond following the onset

of the current signal. Participants completed four blocks (two of both 2 dots and 4 dots to

track) of MOT for each condition of DRT signal, for a total of 12 blocks.

3.2.3 Procedure

Participants were first briefed on the experimental setup and the different equipment

used for each DRT signal type. Participants were then instructed on the MOT task and

shown examples of how the task was presented. Participants were shown how to respond to

the DRT. They were also given several practice trials of each condition of DRT.

Each DRT signal condition was blocked by design so that participants completed

four blocks of MOT for each signal type without changing equipment. The order of DRT

signal presentation was randomised between subjects. The order of MOT difficulty was

randomised between subjects and between DRT signal conditions. Participants were given

two practice trials of both levels of MOT difficulty (2 dot and 4 dots) at the start of each

block of DRT signal type. Each MOT block consisted of seven trials. Within each block, all

the trials used the same number of dots to track: either two or four. Each of these levels

of difficulty was used for two blocks, giving a total of 14 MOT trials for each cell of the

design, a total of 84 trials. Note that these 84 trials refers to the MOT, as the number of

DRT trials would change due to the randomisation of inter-trial intervals. Also note that

each MOT trial refers to each period of tracking the objects. Participants would make five

decisions (target or not a target) for each MOT trial. On average, blocks took five minutes

to complete. Participants were able to take short breaks between blocks. Changing the

equipment between DRT signal conditions took ∼ five minutes. The total time taken to

complete the experiment, given setup, testing and break time, was between 1-1.5 hours.
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3.2.4 Thesis Analysis Overview

Analysis was conducted using the “BayesFactor” and “bayestestR” packages in R,

with default priors. I used the “bayestestR” package to evaluate Bayesian inclusion proba-

bility (written as BFinclusion) for main and interaction effects of each predictor in Bayesian

ANOVAs. The inclusion Bayes factor quantifies the change in inclusion probability from the

prior to the posterior, which can be interpreted as the amount of evidence from the data for

including a predictor (van den Bergh et al., 2020). The prior inclusion probability is the sum

of prior model probabilities of all models containing the predictor. The posterior inclusion

probability is the probability that a predictor is included in the model, computed as the sum

of all model probabilities containing a given predictor after seeing the data (van den Bergh

et al., 2020). For Bayesian ANOVA results, I will refer to BFinclusion as the probability of

data under a model containing a given predictor, compared to models without this predictor.

Greater BFinclusion indicates greater evidence for the effect of a predictor on the dependent

variable of interest. BFinclusion below 0.3 indicates evidence for a null effect of a predictor –

values below one will be presented as fractions in the ANOVA tables. Bayes factors above 3

indicate evidence for the inclusion of a predictor. Any Bayes Factor over 1000 will be referred

to as “BFinclusion > 1000”. Values that indicate strong evidence for or against predictors

(i.e. > 3 or < 1/3 respectively) are shown in bold in the analysis tables.

All results in following chapters will first be discussed relating to trends and figures,

followed by statistical support of trends from the Bayesian analysis (as discussed above), and

then post-hoc analyses or further analyses conducted. DRT-MOT results are always shown

across two main graphs – one showing MOT results and the other showing DRT results (as

well as any accompanying sub-figures). BFinclusion factors are shown in tables, where each

column indicates a different dependent variable (such as DRT response time), and each row

shows the effect of a given predictor (such as difficulty). For post-hoc analyses, Bayesian

t-tests comparing conditions will be referred to as either evidence in favour of a difference

(i.e. the alternative hypothesis – BF10) or evidence in favour of a null difference (BF01)

between conditions. I refer to Jeffreys (1961) for interpretation of Bayes factors in favour of

the null and alternative hypotheses.

For all experiments, DRT responses under 0.1s were excluded. DRT responses over
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2.5s were classed as “misses”. Secondary and subsequent DRT responses (prior to the onset

of the next DRT trial) were classified as “false alarms”. This is standard DRT procedure

(ISO:17488, 2016). Participants with under 50% accuracy in any MOT condition were ex-

cluded. Participants with miss proportions over 50% in the DRT were excluded. Participants

with more than 100 false alarms in the DRT were excluded. This false alarm exclusion was

most commonly due to a technical error in some experiments where the DRT did not record

properly – likely a browser related issue. Poor performance exclusion was defined as DRT

miss proportion greater than 50% or MOT accuracy less than 50% for the lowest difficulty

condition in each experiment.

3.3 Results

The study was treated as a 3x2 within subjects design, with three levels of DRT

signal modality (tactile, visual and virtual) and two levels of MOT difficulty indexed by the

number of dots to track (2 or 4). For the MOT, analysis included dependent variables of

MOT RT and proportion correct – for correctly identifying targets and rejecting non-targets.

DRT results analysed were mean DRT RTs and proportion of misses. Two-way Bayesian

ANOVAs were undertaken for each of these measures, with results presented in Table 3.1.

BFinclusion DRT RT DRT Miss MOT RT MOT acc
difficulty 17/25 19/50 > 1000 > 1000
modality 2/25 44.82 160.84 3/20

difficulty:modality 1/25 13/50 47/50 1/10

Table 3.1: BFinclusion factors across dependent variables (columns) for each predictor
(rows). BFinclusion with sound, or greater, evidence are shown in bold. BFinclusion shown
as fractions represent evidence for null effects of the given predictor. BFinclusion greater
than three represent evidence for the effects of a given predictor, whilst BFinclusion less
than a third represent evidence against the effects of a given predictor.

The MOT was performed well, with an average MOT proportion correct of .80 (SD

= .13) and MOT RT of .99s (SD = .27). The change in performance across levels of MOT

difficulty can be seen in Figure 3.2, which also highlights the minimal impact of modality on

MOT performance. Mean proportion correct declined as difficulty increased, however, there

seemed to be no effect of modality on accuracy. Similarly, mean MOT RT increased with

difficulty, but again there appeared to be minimal effects of modality. Bayesian ANOVAs
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confirmed these trends, as shown in Table 3.1, which indicated strong evidence for the effect

of difficulty on MOT accuracy, and strong evidence for the effects of difficulty and modality

on MOT RT. Evidence was also shown for null effects of modality and interaction on MOT

accuracy, whilst ambiguous evidence was shown for the interaction having an effect on MOT

RT. These results indicate that higher difficulty lead to lower accuracy and higher MOT RT.

Furthermore, modality appeared to have no affect on participants tracking ability, yet did

appear to affect participants MOT RT indicating that participants responding was impaired

in this condition (possibly by the alternate button press or the appearance of virtual signal

during the MOT interrogation phase).
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Figure 3.2: Performance on the MOT across conditions and difficulty. Left Panel : Accu-
racy in the MOT across levels of difficulty for the three modality conditions. Right Panel :
Mean response time in the MOT decision phase across levels of difficulty for the three
modality conditions. Error bars shown are standard error.

The DRT was also performed well, with an average DRT RT of 0.55s (SD = 0.13)

and average DRT miss proportion of .09 (SD = .09). The change in DRT performance across

levels of MOT difficulty can be seen in Figure 3.3. Furthermore, Figure 3.3 highlights the dif-

ferences of modality on DRT performance. Mean DRT RT increased as difficulty increased,

however, there seemed to be no effect of modality on RT. Mean DRT miss proportion seemed

to increase with difficulty, and showed some effects of modality, with virtual modality show-

ing a slightly higher miss proportion. As shown in Table 3.1, Bayesian ANOVAs confirmed

these trends with evidence against the effects of modality, or an interaction, on DRT RTs,

and ambiguous evidence for the effects of difficulty. This indicates that DRT signal modality
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had no effect on participant DRT RTs, and more evidence is needed to qualify the effects of

difficulty. For DRT misses, the Bayesian ANOVA indicated that DRT signal modality did

have an effect on misses, whereas evidence was ambiguous for the effect of difficulty (with

evidence against an interaction effect). This result indicates that the modality of the DRT

may have had an effect on miss proportions, with post-hoc Bayesian t-tests indicating differ-

ences between tactile conditions in comparison with virtual and visual conditions (Virtual

vs Tactile, BF10 = 13.04, Tactile vs Visual, BF10 = 3.81), and ambiguous evidence found for

a difference between visual and virtual conditions (BF10 = 0.52). This indicates that misses

were lowest in the tactile condition. This result is in line with streams of information liter-

ature, as the tactile modality was likely perceived more efficiently due to the low processing

demands from this modality channel (in comparison with the two visual DRT stimuli which

are presented in the same modality as the main task).

Additionally, the between subject factor of participants was analysed for DRT RTs.

In the Bayesian ANOVAs, the participant factor is included in the null model, however,

interpretation of this effect is important to the modality hypothesis, which assumes there

will be no difference across modality. BFinclusion indicated strong evidence for the effect of

participants (BFinclusion > 1000), indicating evidence for a difference between conditions.

This result highlights the reliability of the DRT across modalities.
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DRT response time across levels of difficulty for the three modality conditions. Right
Panel : Mean proportion of misses in the DRT across levels of difficulty for the three
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3.4 Discussion

The current study evaluated whether the effects of DRT signal modality would effect

results in the DRT-MOT paradigm. There were three DRT signal presentations (two were the

same modality): visual, where a light was shown in the periphery; tactile, where participants

received a vibration; and virtual, where a visual signal was presented on the same screen as

the MOT. It is important to note that the virtual signal required a different response - a

key press - than the visual and tactile signal - a button press. The MOT task, and all other

factors of the DRT task, were kept constant between conditions. Comparisons of DRT signal

modality allow us to further validate the DRT-MOT design as a sound form of workload

measurement and a reliable indicator of performance.

In line with previous studies, a large effect of MOT difficulty was shown on DRT RT

and misses, with DRT RT and misses increasing with difficulty. In line with my hypothesis,

DRT signal type had almost no effect on MOT performance, with task accuracy and MOT

RT stable across conditions. There was however, evidence for differences between signal

conditions in DRT RT and DRT misses. This difference was specifically shown in the virtual

condition for DRT misses and in the tactile condition for DRT RT. This result was in line with

the hypothesis that modality would impact DRT RT due to the different levels of processing

required. However, the effect on DRT omissions in the virtual condition was surprising.

Despite the differences between DRT stimulus types, there were strong relationships observed

between stimulus types, showing that different signal presentations are likely to be measuring

the same construct - cognitive workload.

Results from the DRT showed that tactile DRT signals were responded to fastest,

which is in line with previous literature (Stojmenova et al., 2017). Furthermore, there was

no large difference between visual and virtual signals, however there was a trend in line with

expectations where the virtual signal appeared to be responded to slower than the visual

signal, and with greater omissions. This could be the result of the virtual signal requiring

a different response than the other signal presentations and/or from featuring in the same

display as the MOT. As the stimulus type did not appear to affect MOT results, it is likely

that the above reasons were the underlying cause of this difference rather than any underlying

cognitive mechanisms. The similarity between these stimulus types is an improvement from
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earlier experiments (Innes, Evans, et al., 2020), where it was noted that the stimulus was

difficult to perceive due to its low salience and small presentation size. Furthermore, results

from the MOT indicated that the DRT modality had no effect on MOT responding, showing

that the virtual DRT signal did not distract participants from the MOT. These results are

promising for the DRT-MOT task, as it shows the reliability of the MOT task under different

conditions which speaks to the flexibility of the DRT. The DRT again showed sensitivity to

workload change, as observed in Innes, Evans, et al. (2020), showing differences between

conditions of MOT difficulty. This experiment provides further validation of the DRT-MOT

design, as not only was there no impact of responding on the MOT, but the DRT was just

as sensitive compared to other “physical” DRT signals (and responses). Furthermore, when

using an online design (i.e. the virtual condition), it is important to continue using the more

salient version of the virtual DRT signal (as used in this task) which had no effect on MOT

results and showed limited differences from the other “hardware” DRT signal presentations.

The implications of these findings are significant for expanding the use of the DRT-

MOT platform to online environments. By providing evidence that stimulus presentations

indicate the same trends, we can have more confidence in extending the task to broader

environments. These environments include testing interfaces or displays, such as in Thorpe

et al. (2019), where we can be confident that the DRT signal is not affecting main task

performance. Furthermore, in showing the validity of the virtual signal, it allows for a

broader distribution of the task online, using systems such as MTurk to collect data.

Results from the current experiment support the theory of a joint modality capacity,

where we are limited overall in our cognitive capacity across modality channels. This means

that if we are completing two tasks in different modality channels, for example visual and

tactile, we are still limited in a similar way to if we were completing two tasks in the

same modality channel (for example visual and visual). These results support other DRT

modality studies such as Engström et al. (2013); Merat and Jamson (2008); Stojmenova et

al. (2017) and Stojmenova and Sodnik (2018) who have conducted similar studies in applied

environments. Evidently, with results supporting similar research, the DRT-MOT paradigm

appears to be valid in assessing cognitive workload in lab-based environments.

The differences in MOT RT between stimulus presentation conditions should be

evaluated if MOT response timing is important for future analysis, such as modelling MOT
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decisions. This difference is likely due to the alternate responses, i.e. key presses for the

virtual condition compared to button presses for DRT responses. Further, these differences

may have the most effect during the interrogation phase, where dual responses are required.

Biondi et al. (2020) showed that the addition of the DRT can inhibit performance on the

other task, however, in their study, researchers used an n-back task as the workload inducing

task. As both the DRT and the n-back require discrete responses, issues arise from response

switching, which may also be the case in the present study. This is overcome in future DRT-

MOT designs, as DRT responses are only required during the MOT tracking phase, thus,

there are no overlapping response periods. Consequently, the DRT workload indicator is not

affected by MOT responses, and DRT responses do not distract from MOT responding.

The current study is limited in that I only use two levels of MOT difficulty for

comparison and do not evaluate auditory signals (however, in Thorpe et al. (2020), we see

limited effects of auditory stimulus presentation compared to visual). Future research could

evaluate more levels of the MOT, including a baseline condition, to assess the overall change

in workload between “no-load” and the workload induced by the MOT. Future research could

also evaluate whether results from the DRT correspond with other workload measures. In

another study, I tested this aspect, with results discussed below. Furthermore, I also tested

whether results from a measure of a different construct differed from DRT results.

3.5 Further Tests of Validity

In addition to Experiment 1, two further studies were conducted in the DRT-MOT

framework to examine the validity of the design. These experiments used the DRT-MOT

framework and compared 1) a well established subjective measure of cognitive workload –

the NASA-Taskload Index (TLX) and 2) a well established measure of fatigue - the PVT –

with the DRT. Both studies used the DRT-MOT as explained in Innes, Evans, et al. (2020).

Results from both studies are included in the form of JASP outputs (JASP Team, 2019) and

can be found along with analysis scripts and data at https://osf.io/ayp6d/.

In the study comparing the TLX to DRT, participants completed high and low

difficulty blocks of MOT. Workload was measured via three methods (which varied across
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blocks). These workload measures included the DRT, TLX and a pseudo-TLX – similar to the

Air Traffic Workload Index Task (Loft et al., 2015). The NASA-TLX is a well validated form

of workload measurement administered via a short survey (around ten minutes) (Hart, 2006).

The TLX encompasses key areas related to workload including temporal, mental and physical

demand an individual experiences during a task. A full version of the task can be found at

www.keithv.com/software/nasatlx/nasatlx.html. The TLX was administered at the end

of the associated MOT block. The DRT used a tactile signal as in Innes, Evans, et al. (2020)

which occurred across the duration of the block (including during the interrogation phase).

The pseudo-TLX required participants to state a number from 0-10 specifying their perceived

workload at the same frequency as the DRT. Results from the experiment followed expected

trends; workload scores from the TLX increased with MOT difficulty, DRT response times

increased with MOT difficulty and pseudo-TLX increased with MOT difficulty. Furthermore,

MOT accuracy was unaffected by the type of workload measure. These trends provide further

validation for the DRT-MOT framework, with convergent evidence highlighting that the DRT

captured subjectively experienced workload trends induced by the MOT task.

In the study comparing the PVT, participants completed high and low difficulty

blocks of MOT, interspersed with ten minute blocks of PVT. The PVT requires participants

to respond to a stimulus - the presence of an increasing timer - at randomly distributed

intervals between two and ten seconds. In this sense, the PVT is highly similar to the

DRT as it requires participants to frequently detect and respond to a signal. The PVT

however, intends to measure fatigue rather than workload. The only differences in assessing

supposedly differing constructs comes in a slightly longer distribution of inter-trial intervals,

and more importantly, in the absence, of a secondary task. The DRT is a dual-task design

as opposed to the single task design of the PVT. Consequently, in this study, it is evident

that the DRT and PVT are different, as the PVT has no simultaneous task – however, this

was a key design feature. In keeping the PVT as a single task, I assessed whether cognitive

workload effects (shown in DRT results) had an effect on fatigue, and vice-versa.

In the experiment, participants completed the DRT during the MOT tracking phase

and, following blocks of MOT, participants completed ten minute blocks of PVT. Results

from the DRT indicated a difference in workload between conditions of MOT difficulty, with

low difficulty showing lower response times. The PVT did not capture this trend, or, more
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so, the PVT was unaffected by the previous block of MOT. Furthermore, the DRT was

unaffected by time across blocks – i.e. there was no difference in workload across time.

The PVT did show some affects of time, with later blocks of PVT showing higher response

times than early blocks. These results are important for the current thesis, as it shows that

the DRT is measuring the construct of cognitive workload and is seemingly unaffected by

fatigue effects – evidence for construct validity. Similarly, I provide evidence that the PVT

is unaffected by any workload carryover from the preceding block of MOT.

Results from Experiment 1, and the supplemental validation experiments, provide

evidence for the usefulness, and validity of the DRT-MOT paradigm. The following chapters

extend on this, by using this paradigm to assess the quality of display information Chapter 4

and later to differentiate between groups, and be used as a selection metric Chapter 6. In

the scope of this thesis, I view these upcoming chapters as the theoretical component of

my research, where I take results from this chapter and extend this to answer real world

problems.
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4.1 Adding Information - Helpful or Harmful?

As our attentional resource pool is limited (Kahneman, 1973), attending to too

much information could be detrimental to performance. Take for example driving a new car,

where the modern dashboard is more information rich than classic cars. This information

is intended to be useful and helpful for the driver. However, attending to this information

requires some cognitive resources and could potentially distract the driver from the main task

– driving (Strayer et al., 2019; Thorpe et al., 2019). It is thus imperative that these stimuli be

carefully evaluated to understand both the usefulness of the information and the cognitive

demands or distraction it poses to the operator. It is intuitive that added information

should aid performance, and this information is of greater value if it imposes low additional

cognitive workload. Literature supports this notion, showing that useful information can

improve performance (Eppler & Mengis, 2008; Vashitz, Shinar, & Blum, 2008), but only up

to a certain point – essentially following an inverted–U hypothesis of performance (Hardman

& Macchi, 2004). Under this hypothesis, where too much information is detrimental to

performance, too little information, or information which is task irrelevant, can lead to

similar performance detriments. This is similar to situational awareness literature, where

low task engagement can have similar effects to highly demanding tasks. In this chapter, I

test useful-by-design information using the DRT-MOT paradigm to measure the trade off

between workload and performance when assistance is given in order to show that workload

should be measured rather than assumed. The current chapter proposes a methodology of

assessing the effects of increased information on task performance and cognitive workload –

as well as the interaction between these factors.

Understanding the effects of increased information can be difficult, as this requires

analysing both main task performance and latent variables related to cognitive demands.

It is possible, and quite likely, that there is some task trade off between these factors -

where adding more information may increase the demands on the operator, but may improve

performance. This kind of trade off could asymptote or reach ceiling for performance and

for demand, where after a certain point, information no longer increases performance or

cognitive demands, and consequently is ignored. The amount of information given to the

operator may also be a moderator of cognitive demands, where more useful information

could reduce cognitive demand, or information may be distracting from the main task, and
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therefore decrease the overall performance. Despite all of these possible explanations, it

is clear that workload and performance need to be evaluated conjointly to understand the

impact of information on performance and cognitive demands.

Measuring task performance is generally task dependent, and so observing the effects

of increased information on task performance is straightforward in controlled environments.

Understanding the impact of increased information on the latent variable of cognitive work-

load is more complex. Cognitive workload increases when more of our limited attentional

resources are being used. With an individual performing multiple tasks, or tasks of greater

difficulty, their cognitive workload increases with more mental resources exhausted (Kahne-

man, 1973; Strayer et al., 2013). With advances in computer technology, some research has

shown general improvements in our multitasking performance (Haapalainen, Kim, Forlizzi,

& Dey, 2010), and so adding additional information could aid the user without risk. Yet,

there is a great amount of literature in driver distraction that shows this is not necessarily

the case (Coleman et al., 2016; Strayer et al., 2017; Strayer & Johnston, 2001).

Chapters 2 and 3 have shown the DRT as an effective measure of cognitive workload,

and further research has used the DRT to evaluate the effects of varied information in

the driving environment, such as in-vehicle information systems (Strayer et al., 2019, 2017;

Strayer, Turrill, et al., 2015). The DRT has been predominantly used in driver distraction

literature to show the effects of distractions, such as mobile phones and conversations with

passengers, on cognitive workload. Strayer et al. (2019, 2017) have shown the impacts of

in-vehicle information systems, such as CarPlay and Android Auto, and smart assistants,

from Apple and Google, on driver workload. This type of hands-free technology, which allows

users to keep their eyes on the road and hands on the wheel, seems useful without impacting

the driver. However, studies using the DRT have shown that workload significantly increased

when interacting with these technologies - similar to when using a handheld mobile phone

(Strayer et al., 2017).

Similarly, Haapalainen et al. (2010) used several measures including heart rate mon-

itoring, eye tracking and subjective ratings to evaluate the cognitive load faced by users

in gaming systems, finding that load increased under situations of greater multitasking.

Thorpe et al. (2019) extend on this noting the importance of evaluating the impact of a
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system and interface on cognitive workload. Further regarding displays and additional in-

formation, research such as Mayhew (1999) propose that user interface design should have a

set of usability goals to meet, and this should include an assessment of cognitive workload,

to show situations where adding information is no longer helpful. Understanding this trade

off can be difficult, and so it is often equally difficult to find a point where information is

no longer useful. This can often depend on the task outcomes - for example if the main ob-

jective of a task is performance with no need to consider cognitive workload, then increased

amounts of cognitively demanding information may be added to a design. However, in an

environment such as driving, it is imperative that drivers are not cognitively overloaded, and

so information needs to be kept to a minimum - or at least to a standard which it is easily

perceptible and intuitive, but not distracting. These are questions dependent on task and

design, however, there is a method of concurrently assessing these factors.

Here I proposed a paradigm that included additional informative stimuli, which was

developed to help the user’s MOT performance, to evaluate both performance and work-

load factors. It is clear that “useful” additional information enables increased performance

without impacting cognitive workload greatly; whereas “poor” additional information has no

performance benefit (or even is detrimental to performance) or increases cognitive workload

(or both). The current study used the DRT-MOT as used by Innes, Evans, et al. (2020).

The additional information, which was termed assistance, was “attached” to MOT stimuli.

The assistance was intended to be useful and usable, whilst also posing potential distraction

or cognitive demand. There were two types of assistance used which were intended to differ

in the type of processing demands required – one requiring greater visual distraction and

demand, while the other imposed a memory cost. These types of stimuli were selected as

distinct levels of cognitive processes, where the visual stimuli was easily processed and intu-

itive to use, whereas the text assistance required greater processing to encode stimuli. Both

types of assistance consequently required either the same (for the visual) or different (for

text) cognitive processes to the main task and both could be distracting for the participant,

either by drawing their attention away from a focus point (visual) or due to extra cognitive

resource costs (text). I evaluated both MOT performance and cognitive workload (as given

by DRT results).

I conducted two experiments – a between-subjects paradigm and within-subjects
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paradigm. Both experiments manipulated the assistance included in the MOT. The between-

subjects paradigm manipulated assistance types between participants. In the within-subjects

design, assistance was manipulated within participants. It was hypothesized that MOT

accuracy would increase in conditions of added assistance, provided the assistance is useful.

Secondly, it was hypothesized that DRT response times would increase with added assistance

due to the additional distracting effects of the assisted stimuli.

4.2 Methods

Two experiments were undertaken: Experiment 2A was a between subjects exper-

iment and Experiment 2B was a within subjects design. Both experiments used the same

stimulus, as outlined in the Tasks section. The procedure differed slightly for the two designs.

Rather than collecting more data for the between subjects design, a second experiment was

conducted as the MOT procedure was adjusted to avoid potential ceiling effects. This is

discussed below in Experiment 2B.

4.2.1 Participants & Design

Participants in Experiment 2A were 121 psychology students from the University of

Newcastle, recruited online and reimbursed with course credit. The design was a 2x3 mix,

with the within subject condition of assistance; assistance absent or assistance present; and

the between subject condition based on the three types of assistance presented; reappearing

target (64 participants), labels (53 participants) and both (53 participants). Each participant

could opt to complete more than one condition, however, only 2 participants did.

Participants in Experiment 2B were 38 psychology students from the University of

Newcastle, recruited online and reimbursed with course credit. The design was a three way

within subjects design, with three levels of assistance; assistance absent (none), added labels

(text) or reappearing target (reappear).

In both designs, only one MOT difficulty was interrogated - Experiment 2A used 4

dots to tack, and Experiment 2B used 3 dots to track. Exclusion criteria from section 3.2.4
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was followed. From this, 49 data sets were removed for Experiment 2A, and 4 were removed

in Experiment 2B.

4.2.2 Tasks

4.2.2.1 MOT

The MOT involved participants tracking a number of ‘target’ dots within a display

of distractor dots and followed the procedure of Experiment 2 in Innes, Evans, et al. (2020).

During the tracking phase, assistance could be added. The assistance was intended

to be useful for the participants to identify the target dots. There were three types of

added information; reappearing target, added labels and a third condition where both were

available. There was also a condition where assistance was absent – the same as in Innes,

Evans, et al. (2020). In the reappearing target condition, target dots would intermittently

reappear (for one second) in blue during the tracking phase creating a kind of “reveal”

effect. This added information was intended to help the participant confirm (or re-idenitfy)

the target dots to track. Only one target dot was shown in blue at any given time during

the tracking phase. The target dot to reappear was random, so the same target could

reappear consecutively. The reappearance lasted for one second, before the next randomly

selected target dot reappeared. This condition was intended to be useful – as participants

are reminded of the target dot, but could be potentially distracting, as it may draw their

attention from another dot or a focal point.

In the ‘text’ condition, randomized labels were added above all of the objects. These

labels were five characters in length (two capital letters and three numbers). The labels

remained above the dots throughout the encoding and tracking phase, but were removed for

the interrogation phase. These labels were designed to resemble flight numbers on a flight

controller display. They were intended to be useful as participants could quickly memorise the

labels attached to the target dots. The information could also be distracting, as processing

and memorising the labels may take too long, or could pose a significant demand on workload.

The ‘both’ condition included both reappearing targets and labels. Examples of the three

information conditions are shown in figure 4.1
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(a) Text Condition (b) Reappear Condition

(c) Both Condition

Figure 4.1: Examples of each added assistance condition in the design.

In Experiment 2A, participants completed blocks where no information was added

and blocks where only one type of information (text, reappear or both) were added. For all

blocks of MOT in Experiment 2A, participants were asked to track four target dots.

In Experiment 2B, participants completed blocks of the reappear condition, the

text condition and assistance absent condition. In Experiment 2B, participants were asked

to track three target dots.

4.2.2.2 DRT

The DRT closely followed the ISO standard (ISO:17488, 2016). Participants were

asked to respond to the presence of a salient signal throughout the encoding and tracking

phases of the MOT. The DRT signal was a red frame which bordered the MOT display

(as shown in Figure 4.1). The signal onset was randomly distributed to occur every 3-5

seconds. Participants were asked to respond as fast as possible to the signal, which remained
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onscreen for one second, or until a response was made (whichever occurred first). Participants

responded via the keyboard (either “T” or “Y” keys, depending on handedness).

4.2.3 Procedure

Participants in both manipulations completed the task online. Participants were first

given instructions on screen which introduced the DRT procedure and then were shown in-

structions regarding the MOT procedure. Following the instructions, participants completed

a practice block of three MOT trials, followed by the test blocks (six blocks for Experiment

2A, nine for Experiment 2B).

Participants in Experiment 2A completed a total of six experimental blocks which

alternated the presence of assistance (three blocks per condition). The types of assistance

was randomised across participants. Each block of MOT consisted of seven trials, giving

a total of 21 MOT trials for the condition with and without assistance. Within each trial,

participants made five decisions for the MOT task. Participants were given breaks between

blocks with the whole experiment taking around 30 minutes to complete.

Participants in Experiment 2B completed a total of nine experimental blocks which

alternated the assistance given (three blocks per condition). There were 10 trials per block,

giving a total of 30 MOT trials per condition. The sequential order of assistance presentation

was randomised across participants. Participants were given breaks between blocks, with the

whole experiment lasting for around 60 minutes.

Response time and accuracy were recorded for the MOT. Response time and pro-

portion of misses were recorded in the DRT.

4.3 Results

For an overview of the analysis, see Chapter 3.2.4.
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4.3.1 Experiment 2A

Experiment 2A was treated as a two-way mixed design, with the within-subject

variable of presence of information (added assistance vs no assistance) and the between-

subject variable of type of assistance (reappear, text or both). I assessed the response time

and the proportion correct for responses to the MOT, as well as the RT and miss proportion

for responses to the DRT. I used two-way Bayesian ANOVAs for each of the above measures

of interest. For the ANOVA results, I will again refer to BFinclusion as the amount of evidence

that data are likely under a model containing a given predictor compared to models without

this predictor. Results of the Bayesian ANOVAs are presented in Table 4.1.

BFinclusion DRT RT DRT Miss MOT RT MOT acc
Presence of Assistance > 1000 > 1000 551.11 > 1000

Type of Assistance 2.75 49/100 790.83 >1000
Type:Presence 8.82 71/100 438.91 >1000

Table 4.1: BFinclusion factors across dependent variables (columns) for each predictor
(rows). BFinclusion with sound, or greater, evidence are shown in bold. BFinclusion shown
as fractions represent evidence for null effects of the given predictor. BFinclusion greater
than three represent evidence for the effects of a given predictor, whilst BFinclusion less
than a third represent evidence against the effects of a given predictor.

Overall, 121 data sets were used for analysis (49 reappear, 38 text, 34 both). The

mean RT for the MOT was 0.806 s (SD = .22) and the mean accuracy in the MOT was

62.38% (SD = 12.04%). Figure 4.2 shows the change in performance from conditions of no

assistance to adding assistance across the three groups. Mean accuracy appears to increase

for the reappear and both conditions of added information, but declined for the text condi-

tion. The same trend was shown for MOT response time, with response time slowing in the

reappear and both conditions when assistance was added, but becoming faster in the text

condition. Bayesian ANOVAs confirmed these trends (Table 4.1), which indicated strong

evidence for the effects of presence of assistance, type of assistance and the interaction be-

tween these. These results indicate that the presence of assistance did have an effect on

MOT results (both accuracy and RT), but these varied across types of information. This

is especially evident from the interaction effect, where the text group shows opposite trends

to the other groups. Bayesian t-tests confirmed the reliability of these trends, showing ev-

idence for a null difference between groups in assistance absent (none) condition for MOT

response time (reappear vs text; BF01 = 4.98, reappear vs both; BF01 = 4.57, text vs both;



Chapter 4 Application of the DRT as an evaluative tool 56

BF01 = 4.63) and most levels of MOT accuracy (reappear vs text; BF01 = 4.25, reappear

vs both; BF01 = 1.55, text vs both; BF01 = 3.23). In conditions of added assistance, there

was evidence shown for a null difference in MOT response time between the reappear and

both conditions (BF01 = 4.47), with ambiguous evidence shown between the other condi-

tions (reappear vs text; BF10 = 0.74, text vs both; BF10 = 1.17). For MOT accuracy in

the assistance conditions, evidence was shown for a difference between reappear and text

conditions (BF10 > 1000), with ambiguous evidence shown for a difference between other

conditions (reappear vs both; BF10 = 2.19, text vs both; BF10 = 2.06)
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Figure 4.2: Performance on the MOT across groups. Left Panel : Accuracy in the MOT
across modes of assistance (none or added) for the three groups. Right Panel : Mean
response time in the MOT decision phase across modes of assistance for the three groups.
Error bars shown are standard error.

Results from the DRT showed similar trends, as shown in Figure 4.3, with sound

performance observed across participants and conditions for both mean DRT response time

(M = .55, SD = .14) and DRT miss proportions (M = .09, SD = .15). The change in

performance across groups and conditions for DRT metrics is observable in Figure 4.3, with

DRT response time clearly affected by the interaction of type of assistance (group) and the

presence of assistance, with the reappear and both conditions showing steeper slowing of

response time to the DRT in the presence of assistance. Presence of assistance also appeared

to have an effect on DRT miss proportion, with miss proportion increasing for the DRT

when assistance was added. Results shown in Table 4.1 from the Bayesian ANOVA confirm

these trends, with evidence for the inclusion of the effects of presence of assistance and the
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interaction effect (presence of assistance and type of assistance) on DRT response times. For

DRT miss proportions, evidence was only found for the effect of the presence of assistance,

suggesting that adding assistance led to greater miss proportions.

Post-hoc Bayesian t-tests indicated that there was no difference in DRT response

time between types of information (group) when assistance was absent (reappear vs text;

BF01 = 4.82, reappear vs both; BF01 = 4.93, text vs both; BF01 = 4.57). In the presence

of assistance, there was evidence for no difference between the reappear and both conditions

(BF01 = 4.63), and ambiguous evidence for a difference between these conditions and the

text condition.
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Figure 4.3: Performance on the DRT across groups. Left Panel : Mean response time to
the DRT across modes of assistance (none or added) for the three groups. Right Panel :
Mean miss proportion in the DRT across modes of assistance for the three groups. Error
bars shown are standard error.

4.3.1.1 Individual Analysis

Finally, included in Figure 4.4 is an analysis of differences between individual par-

ticipants across the six conditions, with the between subjects variable of information type

shown in the columns, and the within subjects variable of presence of information presented

across the rows. The individual analysis allows us to observe the differences between groups

for the design. Clearly, the text condition fared the worst with the assistance added. It may

be the case that participants ignored the label assistance or the labels interfered with track-

ing. However, there are participants within this group who have higher MOT accuracy in
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the presence of the textual assistance. These individuals may have found a way to use this

assistance more effectively. This highlights the importance of individual differences when

investigating the usefulness of adding assistance in designs, as although the majority found

the assistance detrimental, some participants were able to use the assistance as intended

which aided performance.
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Figure 4.4: Individual performance for Experiment 2A, shown across conditions – infor-
mation added shown as the top row and conditions shown by columns. MOT accuracy
is shown on the y-axis and DRT response time is shown on the x-axis (note that DRT
response time is shown descending from left to right). The colour of the dots indicates the
number of misses, with blue being lower. The triangle shows the mean performance for
each condition. Ideal performance would tend towards the top right of the figure with a
blue shading.

4.3.2 Experiment 2B

Experiment 2B was treated as a three-way design, with varying types of added

assistance (none, reappear or text) included as the within-subjects variable. Experiment

2B mainly varied from Experiment 2A in that difficulty of the MOT was reduced to avoid

ceiling effects and participants completed two added assistance conditions as well as the

control condition. After exclusion criteria, there were 34 data sets used in the analysis. The
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mean MOT accuracy was 73.8% (SD = 12.32) and MOT response time was .99 s (SD = .72),

whilst mean DRT response time was .55 s (SD = .11) and DRT miss proportion was 8.3%

(SD = 8.3). Bayesian ANOVAs were conducted for the each of the four dependent variables

(MOT accuracy and response time, DRT response time and miss proportion), with results

shown in Table 4.2. Figure 4.5 and Figure 4.6 show the mean results across participants for

dependent variables of the MOT and DRT respectively. It is worth noting that these figures

differ from those above, as assistance conditions are shown on the x-axis.

Results from the MOT are shown in Figure 4.5, where accuracy seems to increase

in the reappear assistance condition, but decrease for the text condition. For MOT results,

similar to Experiment 2A, response time appeared to increase for the reappear condition.

Bayesian ANOVAs confirmed these trends for accuracy, as seen in Table 4.2, however, ev-

idence was shown for no effect of assistance type on MOT response time. Bayesian t-tests

highlighted the reliability of this result, with strong evidence shown for a difference in MOT

accuracy between the reappear condition and the two other conditions (reappear vs text;

BF10 > 1000, reappear vs none; BF10 > 1000), and ambiguous evidence for a difference

between the text and assistance absent conditions (BF10 = 0.71). These results indicate

that MOT response times were unaffected by assistance condition, meaning that strategy

was unlikely to differ for participants between conditions. However, the reappearance assis-

tance appeared to aid participant performance, highlighting the usefulness of this type of

assistance in the current design, whilst the text assistance appears to add no performance

benefit. In fact, in conjunction with results from Experiment 2A, trends indicated that the

text condition not only fails to assist participants, but may actually decrease MOT perfor-

mance.

BFinclusion DRT RT DRT Miss MOT RT MOT Acc
Type of Assistance >1000 7.38 1/9.1 >1000

Table 4.2: BFinclusion factors across dependent variables (columns) for the predictor
(type of assistance). BFinclusion with sound, or greater, evidence are shown in bold.
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Figure 4.5: Performance on the MOT across assistance conditions. Left Panel : Accuracy
in the MOT across types of assistance. Right Panel : Mean response time in the MOT
decision phase across types of assistance. Error bars shown are standard error.

DRT results, as in Figure 4.6, show related trends to the MOT results. In the DRT,

the reappear assistance condition appears to have the highest associated response times,

whereas the text assistance condition appears to have no effect on DRT response time. This

is different in DRT miss proportions, where it is evident that the greatest lapse proportion is

observed in the text assistance condition, with the reappear assistance condition also showing

increase miss proportions. Bayesian ANOVAs confirmed these trends for DRT response time,

as seen in Table 4.2, with strong evidence for an effect of assistance type. Bayesian t-tests

confirmed these trends, with the reappear assistance condition showing strong evidence for

differences from the other assistance conditions (reappear vs text; BF10 = 70.18, reappear vs

none; BF10 = 231.42). Ambiguous evidence was shown for a difference between the assistance

absent condition (none) and the text condition for mean DRT response time (BF10 = 2.18).

Furthermore, a Bayesian ANOVA showed evidence for a difference in DRT miss proportions

across conditions. Bayesian t-tests highlighted evidence for a difference between the text

condition and the assistance absent condition (BF10 = 18.95), however, there was ambiguous

evidence for differences between other conditions. The DRT results present a telling story,

as response times are seemingly unaffected in the text condition (compared to the absence

of information condition), however, participants show an increase in lapses – a result which

indicates higher cognitive workload. Furthermore, the reappear condition similarly shows

an increase in participants cognitive workload, highlighting that both assistance conditions
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were associated with a greater allocation of mental resources. Alternatively, the link between

DRT response time and MOT accuracy may be the result of a speed accuracy trade-off, as

the reappear condition shows the highest MOT accuracy and slowest DRT response time.

This may also represent a link between cognitive workload and the speed-accuracy trade-off

phenomenon, where high workload leads to a more prevalent trade-off.
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Figure 4.6: Performance on the MOT across assistance conditions. Left Panel : Accuracy
in the MOT across types of assistance. Right Panel : Mean response time in the MOT
decision phase across types of assistance. Error bars shown are standard error.

4.3.2.1 Individual Analysis

Akin to results of Experiment 2A, Figure 4.7 shows individual performance across

the assistance conditions. Results similarly show that some individuals are able to use the

text condition effectively, to attain a higher accuracy, however, in Experiment 2B, there are

far fewer of these participants. This indicates that rather than participants showing greater

efficiency with textual assistance, these individuals were more efficient in the MOT task

than their peers. Furthermore, as Experiment 2A used 4 dots to track, participants may

have been at their performance ceiling, and so presence of assistance had no true impact on

performance. In reducing the difficulty of Experiment 2B, results indicated that this may

have been the case for individuals who showed higher performance with textual assistance

in Experiment 2A, as there were a limited number of individuals who showed a preference

for the text assistance (in MOT and DRT performance).
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Figure 4.7

4.4 Discussion

The current study aimed to evaluate the effects of additional “useful” information on

cognitive workload. Both the within and between subjects studies showed highly comparable

results across the different types of information added. For Experiment 2A, it was clear that

the MOT task was difficult, and so the difficulty was reduced for Experiment 2B to control

for ceiling effects.

In both studies, it was evident that accuracy was affected by the type of assistance

given to participants. When the assistance given was the reappearing target, accuracy in-

creased. However, in the text condition, where labels were attached, participants’ accuracy

decreased. The condition which included both types of assistance (in Experiment 2A) showed

an increase in accuracy, but a smaller increase than in the reappearing target only condition.

These results provide ambiguous support of the hypothesis, with the reoccurring target lo-

cation leading to an increase in accuracy, however, the label condition lead to a decrease in

accuracy.
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When evaluating cognitive workload in both studies, there is a clear trade off ob-

served. In the reappearing target condition, DRT response time increased. In the text

condition, there was no increase to response time. In the within subjects “both” condition,

response times also increased. These results support the hypothesis that additional assis-

tance leads to an increase in cognitive workload. Again however, the label condition did not

support the hypothesis, with observed workload higher in this condition, with a decrease in

MOT performance. Overall however, the trends remain across both experiments – adding

“useful” assistance costs workload but corresponds with performance increases; and adding

assistance which is not useful generally adds no workload, but has minimal performance

benefits.

When combining these MOT and DRT results, a pattern becomes evident. In the

target reoccurring condition, accuracy of tracking was improved, however cognitive work-

load increased. This provides evidence that the assistance was useful, but required greater

cognitive resources to process the information. In the label condition, the opposite of this

seems to be the case, with no increase to cognitive workload and a decline to accuracy of

tracking. This type of assistance is detrimental to a design as it appears to be no more

distracting (in terms of cognitive resources), but actually leads to a decline in performance.

This could be due to participants ignoring the distracting information and directing more

resources towards the DRT, consequently sacrificing performance in the MOT.

There were differences between experiments 2A and 2B, which are likely due to the

difficulty difference in the MOT. Trends appeared to hold across the two difficulty conditions

and between the between vs. within subjects manipulation. Experiment 2B (with three dots

to track) showed similar overall mean DRT response times, but greater MOT accuracy.

Interestingly, despite the clear differences, for all assistance conditions, in MOT accuracy

between experiments (where Experiment 2B had higher accuracy), there was no difference

across all assistance conditions for DRT response times. This finding is not subject to

statistical analysis due to the groups completing alternate experiments, however, it does

show the importance of analysing the trade-off between tasks. In Experiment 2A, participant

workload was likely higher than participants in Experiment 2B, however, this difference was

not captured by the DRT. Instead however, participants showed a greater trade-off with

MOT performance, with participants in Experiment 2A performing closer to chance levels
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than participants in Experiment 2B (who showed higher than chance accuracy). Two of

the possible explanations for this outcome are that participants in Experiment 2A gave up

on the MOT to focus on the DRT with the difficulty too high, or alternatively there is a

speed-accuracy trade-off which is moderated by the difficulty.

It is also worth noting the individual differences observed. These are best viewed

in the results of Experiment 2B, where we can directly compare conditions between indi-

viduals. In this Experiment, results showed that for 12 subjects, MOT accuracy was higher

in the text condition than no assistance. Furthermore, results indicated that 7 participants

showed higher accuracy in the text condition than the reappearance condition. These results

highlight the individual differences that do exist, which should be accounted for in designing

displays or evaluating additional assistance.

These results show two divergent examples of adding assistance into a display. An

example of useful assistance was shown by the reappearing target condition. In this condition,

performance was enhanced, however it came at a cost to workload as processing the assistance

required a greater amount of mental resources. An example of poor assistance was shown in

the label condition. Labels were intended to be useful as participants could dedicate resources

to memorising labels attached to targets in order to make tracking easier. However, results

showed that participants were using no extra resources and that the information actually led

to a decline in performance. The reasons for this are not entirely clear. Some participants

may have found the labels too difficult to memorize, consequently leading to a false memory

trace when tracking. Alternatively, some participants may have opted to ignore the labels but

then later been distracted by them. There are also design limitations, as the labels may have

appeared too distant from the target object, or targets may not have remained highlighted

for long enough for participants to scan all three or four and associate this with the target.

When observing individual data, it is evident that some participants could actually use the

information to their advantage, but, similar to the reoccurring target condition, suffered

in the workload measure. Further research and analysis, including measures such as eye-

tracking or subjective surveys are required to get a deeper insight into the strategy adopted

in this text condition. At a surface level however, it is clear that the two sources of assistance

provide sound examples of useful, costly assistance and ineffective, unnecessary assistance.
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The current study links closely to user interface and design literature, with designers

more frequently adopting technology into user interfaces and displays. This technology may

seem intuitive and useful at a surface level, however, the necessity of the technology and the

way in which it is inputted need to be evaluated thoroughly to form a holistic view of the

impacts. Take for example the reappearing target condition - in a display which is already

highly mentally taxing, adding this information may be useful for the operators performance,

however could lead to a potential cognitive overload scenario as the stimulus requires deeper

processing. If an operator is already highly loaded, this information may be more harmful

than helpful. In another display where workload demands were low and the importance

was placed on performance, this type of assistance would be highly useful. Mayhew (1999)

propose that designers should establish a set of usability goals that an interface should

achieve, and the current study shows the importance of workload evaluation as a part of

those usability goals. As outlined above, user interface literature has noted the importance

of workload evaluation (Dan & Reiner, 2017; Gerjets, Walter, Rosenstiel, Bogdan, & Zander,

2014), and the current study provides useful examples of the perils and pitfalls of adding

assistance into a display.

It is further important to consider the context of such research, with different en-

vironments posing unique challenges and requirements. As discussed earlier, different envi-

ronments may place greater importance on one factor over another. For example, in driving,

there is a greater amount of importance placed on cognitive workload than task performance

as task performance is relatively indistinguishable above a threshold (i.e. most driving is

considered “good” performance unless a serious error is made). However, if the driver is

distracted, it could lead to serious errors or lapses in concentration, and therefore it is im-

perative that workload remains at a minimum. In other environments, task performance may

be preferred over workload, as cognitive overload may not have serious consequences. These

factors must first be considered in any design as they are important indicators of the overall

success of added assistance. Future studies could potentially evaluate this by giving unique

instructions across conditions to place importance on performance or limiting cognitive load

- similar to studies of speed-accuracy trade off.
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4.4.1 Limitations and Future Directions

The current study was limited by several design elements which could influence

results. Initially, the four dot condition of the MOT in the between subjects study may have

been too difficult and consequently we were observing ceiling effects on cognitive workload

in some conditions of assistance. This was rectified in the within subjects experiment, and

seemed to have an impact with more clear differences shown between assistance conditions.

Secondly, the trade off between workload and performance was difficult to directly associate

with one factor, especially in the text condition, as parts of the design may have distracted

participants in both tasks rather than just one. This is a key tenet of the DRT, however,

if strategy or task preference was important to analysis, this is a limitation. Finally, in the

text condition, the labels were turned off for the interrogation phase of the MOT. This could

have caused a distraction or could have affected performance if participants were tracking

the labels and not the associated dot. Future studies could place the label closer to the

associated dot, or overlay the label on the target. Alternatively, future studies could keep

the labels active during the interrogation to assess whether the participants are able to use

this assistance. Other factors such as increasing the encoding time could also be considered

in future designs.
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The current chapter shows a practical application of the DRT methodology discussed

in Chapter 4. The contents of this chapter are taken from Innes, Howard, et al. (2020) which

is published in the Journal of the Human Factors and Ergonomics society1. The paper

was completed as part of this thesis, and fits closely within the scope of the thesis as a

further application of cognitive workload measurement, in a novel environment. Similar to

Chapter 4, I use the DRT to evaluate the impact of different types of information – however,

in this paper, I evaluate the impact of heads-up display information on the workload and

performance of helicopter pilots. My role on this paper as the main author was to develop

methodology, collect data, conduct analysis and writing. The experiment was conducted in

collaboration with Airbus Defense and Space and Hensoldt Sensor Systems.2

5.1 Measuring Workload in Aviation

With more information present and technological advances, our ability to multitask

has seemingly improved (Haapalainen et al., 2010), however, there is substantial literature

on driver distraction and cognitive workload that suggest this is not the case (Strayer et al.,

2017; Strayer & Johnston, 2001; Strayer, Turrill, et al., 2015). Both added visual stimuli and

seemingly useful information systems can lead to detrimental distraction due to cognitive

load in drivers (Lee et al., 2008; Strayer et al., 2017). Here, we offer a novel and unique

workload-capacity assessment of helicopter pilots. Specifically, technological advances enable

rich information to be projected into pilots’ heads-up displays (HUDs), but the impact of

this extra information on cognitive demand is not well understood. Here we ask; can too

much information be detrimental to performance? To answer this question, we tested highly

qualified helicopter pilots in a flight simulator in varying environmental and HUD settings.

Cognitive demands and distractions are difficult to assess within a multitasking

environment. Adding to the number of items to process (or increasing the difficulty of these

items to process) causes a greater depletion of limited attentional resources (Kahneman, 1973;

Townsend & Eidels, 2011). When attentional resources are low, responses are impaired and

1As this paper is published elsewhere, I have included footnotes where formatting or reporting is in-
consistent and where content may be repetitive. The paper can be found at https://doi.org/10.1177/
0018720820945409

2Much of the introduction below is covered in earlier chapters. Here I show how these principles apply
to real world aviation settings. This content may seem repetitive from earlier chapters.
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we experience a diminished ability to process and react to the demands at hand. Such is

the case when completing cognitive tasks while driving – our performance is diminished in

both tasks (Watson & Strayer, 2010). Here we define cognitive workload as the level of

cognitive demand placed on an individual from a task/s and distraction as scenarios where

the individuals attention is drawn away from the main task/s. (Lee et al., 2008)

The detection response task (DRT) adds an additional task that measures resid-

ual resources via a simple detection task. In the DRT, which is a standardised procedure

(ISO:17488, 2016), participants are asked to respond as quickly as possible to a salient stimuli,

which is administered frequently, whilst performing another task. Longer response times and

increased misses correspond to higher cognitive workload (Strayer et al., 2013). Reactions

are impaired when people are subjected to greater task demands, leaving fewer resources

to allocate to the DRT. As an example, Strayer et al. (2013) showed that DRT response

times for car drivers increased with the presence of a passenger or when talking on a mobile

phone (both forms of distraction), similar to the increase when performing an operation span

task. The sources of cognitive load mentioned above are external to the task at hand—it

is not necessary to talk on the phone while driving—but systems related to completing the

task, such as a user interface, can also impose cognitive workload. In extreme cases, a user

interface can undermine its intended purpose of assisting the user by presenting too much

information or interrupting relevant tasks (Johnson & Wiles, 2003).

User interfaces and other information delivery systems should therefore present only

as much information as a user needs in an unobtrusive way (Haapalainen et al., 2010). A

complication for user interface developers is that the amount of information a user needs may

change as the user’s workload state changes — a level of information that may be appropriate

in one context may overload the user in another. A solution to this issue is to change the

amount or presentation of information in real time, based on the user’s cognitive capacity. A

concurrent measure of workload is one necessary step in developing these adaptive interfaces.

A large body of cognitive workload research is centred around distraction in driving

environments, yet this research is equally critical to the understanding of human-machine

interactions in aviation. Helicopter and aeroplane cockpits are both extremely demand-

ing environments, with a plethora of interfaces delivering multiple streams of information

concerning air-speed, heading, fuel, obstacles and alike. C. D. Wickens (2002b) outlines
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interlinking factors crucial to human interaction with aircraft, and highlights that much

psychological research related to these factors has been conducted in isolation. Further,

Kantowitz and Casper (2017) reference the increasing amount of technology and automation

in aviation, which impacts crew workload – noting that studies of attention may assist in

solving workload related problems in aviation environments. As distracted driving literature

has shown, understanding the impact of this technology is vital, with the literature informing

policy and technological development (Strayer, Cooper, Turrill, Coleman, & Hopman, 2015;

Young et al., 2013). In aviation, Huttunen et al. (2011) and Hannula, Huttunen, Koskelo,

Laitinen, and Leino (2008) both evaluated cognitive workload using the speech prosody and

psychopsyhiological stress (PPS) indicators respectively. Whilst these measures are effec-

tive in assessing their related constructs, they may not be reliable indicators when assessing

workload induced by technological factors. Previous work by Zimmermann et al. (2019) also

aimed to assess the usefulness of additional HUD information, in the helicopter setting, with

findings indicating that pilots flew more effectively under conditions of more information.

Further, in the military setting where this technology is most used, landings are far more fre-

quent and difficult, meaning that the HUD information allows a safer environment in critical

scenarios. However, the measure of cognitive workload used in this study – the NASA Task

Load Index – provided inconclusive results regarding cognitive workload. Evidently, with

technology and automation constantly developing in avionics, literature stresses the need for

evaluation of workload to ensure usability of such technology.

Some pilots and avionics developers operate as though more available information

can only be beneficial, but this overlooks cognitive workload factors (Thorpe et al., 2019).

Inversely, the type of information given to pilots may reduce their workload if the information

is more readily perceived and easily processed, such as information which is 3D and more

naturalistic (Dan & Reiner, 2017; Gerjets et al., 2014) 3. In the current study we use the

DRT to assess the workload demands arising from changes to the environment and the

way information is presented (referred to as level of symbology). As the DRT assesses

cognitive workload through residual capacity, we expect results from the DRT to translate

from distracted driving literature to aviation environments.

3In linking this thread with the objectives of this thesis, it is clear that designers require the tools to
evaluate this trade off between what is plausible and subjectively acceptable, compared to what objective
measures actually indicate in cognitive workload.
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The purpose of the current study was to evaluate the effectiveness and sensitivity

of the DRT in a helicopter simulator environment, by varying the difficulty (environmental

factors) of simulated flight conditions. The helicopter flight task was completed in a high-

fidelity flight simulator. Flight simulators are widely used and well validated training facilities

(Hays, Jacobs, Prince, & Salas, 1992; Roenker, Cissell, Ball, Wadley, & Edwards, 2003), so

evaluation of cognitive workload in a simulator could facilitate deeper understanding of pilots’

cognitive demands. Further, we used the DRT as a tool to measure the impact of added

visual information (“symbology”) in a HUD on helicopter pilots cognitive workload. We

compared industry standard HUD symbology to new, more information rich symbology4, as

well as a control condition with no symbology. For a full overview of the technology input

to the HUD see Zimmermann et al. (2019). Despite the limited number of participants,

we placed a high importance on ecological validity of the task, designing a flight path that

emphasised a realistic scenario, and testing pilots who were highly familiar with military

helicopter environments.

It was expected that more information given to pilots would result in better flight

outcomes. However, it was also anticipated that more information would lead to an increase

in cognitive workload, similar to results reported by Strayer, Cooper, Turrill, Coleman, and

Hopman (2016), Strayer, Turrill, et al. (2015) and Strayer et al. (2019). We first hypothesized

that increased symbology would increase flight performance and landing accuracy, similar

to results from Zimmermann et al. (2019). We also hypothesized that DRT response times

would increase with lower visual acuity (i.e. worse simulated weather conditions). Finally,

we hypothesized that DRT response times would increase with added symbology.

4Here, “information rich symbology” means that pilots were able to see a large amount of input within
their HUD. Moving from basic symbology such as speed, altitude and flight lines to higher levels of symbology,
such as 3D terrain grids, landing assistance and more. Examples of this can be seen in Appendix A (A).
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5.2 Method

5.2.1 Participants

Eight pilots with experience in helicopter simulators and 2D symbology undertook

the study. All pilots were male, had over 2,000 hours flying experience and extensive sim-

ulator experience. Seven pilots were recruited from the Airbus Brisbane facility, with one

recruited from Hensoldt staff. Pilots recruited from the Airbus facility were either current

military personnel or involved in testing or training. It was imperative that we tested highly

trained and experienced personnel to ensure that confounding variables were limited; espe-

cially related to familiarity with the large-platform helicopter equipment and the advanced

heads-up display. This research was approved by the Human Research Ethics Committee at

the University of Newcastle (HREC-2013-0250).

5.2.2 Equipment

A helicopter simulator was used as the background during data collection. Data

was collected in an Airbus MRH90 Taipan Multi Role helicopter simulator. The simulator

incorporated three partially overlapping screens which made up 200◦ x 40◦ field of vision.

The participant sat at a radius of approximately two metres from the screen. Controls in

the simulator included a collective shaft, cyclic shaft and two foot pedals. The participants

were shown an electronic map and a multi-function display, which indicated altitude, ground

speed, collective power and helicopter roll. Participants were also fitted with a headpiece

which was placed over the participants eyes. The headpiece acted as goggles, so that the par-

ticipant could still see the simulator. In conditions where symbology was added, additional

information was overlaid in their visual field. The location and angle of the headpiece was

tracked at high rate so that information projected into the visual field mapped accurately

and dynamically onto the visual environment.

A DRT device was used, closely adhering to ISO 17488 2016. The DRT device

included a vibrating pad, which was taped to the participant’s skin near their shoulder, and a

response button, which was attached to the collective shaft nearest to where the pilots thumb
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rested. Engström et al. (2013) provide evidence for the tactile DRT as a sensitive measure

of cognitive workload, finding similar trends to the use of a visual stimulus. Furthermore,

Cooper et al. (2016) suggest the tactile DRT is most effective for cutting down potential

visual conflicts. With an already crowded visual environment, we proposed the use of the

tactile DRT to limit visual workload effects.

5.2.3 Stimuli and Design

Each participant completed two simultaneous tasks – the flight simulation and the

DRT. For the DRT, a short stimulus was elicited via a vibration. The participant was

required to respond via the response button to each iteration of the stimulus. The stimulus

lasted for one second (or until the response button was pressed, whichever came first). The

DRT stimulus was elicited at an interval of 3 - 5 seconds and occurred for the duration of

each simulated flight. Responses entered before the onset of the next vibration stimulus were

deemed “hits”, and failures to respond within 2.5 seconds were deemed a “miss”. Second

(and subsequent) responses entered before the onset of the next stimulus, as well as responses

faster than 0.1 seconds, were deemed “false alarms”. Response time was measured as the

time between the onset of the vibration stimulus and the pressing of the switch.

The flight simulation involved participants undertaking a predetermined flight path

with multiple objectives throughout. There were two conditions of visual environment: Day

and Night. In all conditions, air traffic was absent, wind speed was set at 5km/h and weather

was set to have no cloud or rain. The only parameters that varied were visibility (distance

in meters), time of day, dust (on or off) and FLIR (on or off). The dust parameter related

to simulated “brown-out”, where simulated dust would inhibit pilots view below a certain

altitude (∼ 100 feet). FLIR (forward looking infrared radar) is an industry standard night

vision technology, used only in the night conditions. A full summary of conditions can be

seen in Figure 5.1.

We used three levels of HUD information; no symbology – where there was no infor-

mation projected onto the pilots’ HUD; 2D symbology – the generic two-dimensional infor-

mation projected to the pilots’ helmet (see Appendix A (A) for more details); or conformal

3D symbology – information which appears to be overlaid onto the simulated environment, as
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well as the generic 2D information (see Appendix A (A) for more details; for a full overview

of Hensoldt’s Sferion assistance system, see Münsterer et al. (2014)). In the 2D condition,

pilots were shown industry standard symbology which included speed, heading, altitude,

geographic coordinates and distance to the LZ were displayed. Münsterer et al. (2014) pro-

vides a good example of standard 2D information. The 2D symbology condition was made

as similar as possible to the standard heads-up display used by military helicopter pilots in

modern large-platform helicopters.

In the 3D condition, symbology included the 2D information, horizon lines, ridge

lines, landscape grids, highlighted obstacles and LZ virtual towers which assisted in guiding

the pilot. Figure 15(d) in Zimmermann et al. (2019) and Figures 8–11 in Münsterer et al.

(2014), provide good examples of the 3D symbology condition. The 3D symbology condition

contained extra information, and the condition without symbology contained less. In the 3D

symbology condition, all 2D symbology was shown, as well as the LIDAR (light detection

and ranging laser sensor) information. This included a grid over the environment, contours,

LZ information, horizon line and helicopter position. For an example of the three symbology

conditions, see Appendix A (A).

In conditions without symbology, the headpiece remained fixed to the participants

but displayed no visual information in the Day or Dust conditions. In the Night condition

without symbology, FLIR (forward looking infrared radar) information was projected in the

headpiece, with no additional symbology. In the 2D symbology condition, ground speed,

radial altitude, location zone distance, and helicopter position were shown, as well as basic

indicators for the waypoint and landing zone (LZ).

The study used a 2x3 factorial design, with two levels of visual environment (Day

or Night) and two levels of Symbology (2D or 3D). Additionally, a condition without sym-

bology was presented in either the Day or Night environmental condition was included. The

visual environment in this condition was counterbalanced across pilots. Each pilot therefore

completed five conditions – four with each level of symbology and visual environment, and

one of two possible no-symbology conditions.
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Figure 5.1: Full table of experimental conditions. The table shows the 2 x 2 within
subjects design with the added between-subjects conditions without symbology (shaded in
grey). Each condition maintained strictly controlled simulator settings with the exception
of those listed under the title. in the table “VIS” stands for the visual range (in metres);
“TIME” indicates the hour of day in the simulator; “Dust” indicates whether brown out was
on or off for landings; “FLIR” stands for Forward Looking Infrared Radar; “FLIRTIME”
indicates the setting for FLIR time of day - a brightness setting; “FLIRVIS” indicates the
visibility range setting for FLIR. Symbology conditions vary on the information which is
displayed. In 0D, the headpiece is switched off (aside from FLIR on in the night condition).
In 2D - Ground Speed, Radial Altitude, Landing Zones Distance and a horizon line are
displayed. In 3D symbology, all of the 2D symbology with additional landing zone displays
and LIDAR (Light detection and ranging) is displayed. For a further breakdown of the
symbology conditions, see Appendix A (A). The shaded boxes show the two randomised
between subjects conditions - pilots only completed one of these.

5.2.4 Procedure

All participants were familiar with the simulator environment, and were given in-

structions about the DRT. Participants were not instructed to preference either the DRT or

the flight task, but were instructed that performance was measured across both5. The desig-

nated flight path was outlined to the participants. They were given several minutes of flight

5Despite this, pilots tended to give preference to the simulated flight due to training, where they are
trained to “task shed” in difficult periods. The decision to not specify a preferred task here was motivated
by the study by Conti et al. (2012)
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time to adjust to the simulator before completing a practice run on the designated path.

Following this, participants were given five practice DRT trials in isolation. Participants

then began the experiment. The DRT commenced as soon as the pilot lifted the collective

shaft for each condition.

The flight path was identical for all six conditions. The flight path took approxi-

mately 13 minutes to complete. Pilots were given verbal instructions during the flight to

inform them of the objectives. Objectives included items such as passing a specified point

at a target altitude and speed (known as “gates”), as well as specific landing scenarios, for

example, landing in the centre of a sand bank. The flight path was divided into six sections,

each with a different requirement, such as gates or landings. The objectives for the whole

flight included two landings (one of which had poor visibility), an aborted landing, and three

set “gates” to pass through at target speed and altitude. Furthermore, pilots were given

directions on speed and altitude for each section, as well as specific navigation instructions.

For a full breakdown of the flight path, see Appendix A (A).

Participants each completed five of the six conditions. The order in which the con-

ditions were presented to participants was pseudo-randomised; the no-symbology condition

was never presented first, to account for the pilots lack of familiarity with the flight path.

If, during a flight trial, the participant crashed or there were any technical issues, the run

was restarted. Responses in these trials were recorded separately. Participants were given

breaks between flights. All flight data was recorded. DRT response times and misses were

recorded. 6

5.3 Results

In order to include the effect of the “no symbology” condition, we treated our study

as a 2x3 design, with within-subject variables of time (day or night) and mixed variables

6Results in this section are not presented according to Section 3.2.4. Here BF10 is used to represent
evidence for the winning ANOVA model, and BFinclusion is not shown. BF10 values are not shown as
BF10 > 1000, but rather show exact estimates. Further, graphs appear in a different format. The design
for this study was mixed, where the time of day variable was within subjects and the symbology was mixed
(within subjects for 2D and 3D, but varied for the no symbology condition.
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of symbology (none, 2D, 3D). Flight performance was given by a number of indicators se-

lected after consultation with experts and aviation literature (Krueger, Armstrong, & Cisco,

1985). These indicators were measured objectively and were quantifiable, as well as remain-

ing relevant to the task. Indicators assessed were landing data, in-flight targets and overall

flight variability. The main reason to evaluate flight quality was to ensure there was no task

trade-off between the flight and the DRT. DRT response time and misses were analysed.

We removed 4 sets of flight data due to crashes. These crashes were generally simulator

related, such as a failure to calibrate the headpiece within the environment. These flights

could provide interesting insight into pilot behavior under load, however, results from this

data were uninformative due to the lack of data and varying crash time points.

For the workload measure we assessed mean DRT response time and the proportion

of lapses. For each metric we completed Bayesian ANOVAs for the environmental conditions,

symbology conditions and the interaction. All analysis was completed using the statistical

program JASP (JASP Team, 2019) using default priors. Bayesian ANOVAs operate in

much the same way as traditional frequentist ANOVAs, but with a key advantage: Bayesian

ANOVAs can separately identify evidence in favor of an effect vs. evidence in favor of no

effect (i.e. positive evidence for the null hypothesis). This is communicated through Bayes

factors (BFs), which compare the likelihood of the null hypothesis (H0) – which assumes no

difference between conditions – against the likelihood of the alternative hypotheses (H1) –

which assumes a difference between conditions. Bayesian inference has become a standard

approach in many fields because of its advantages over frequentist methods (Wagenmakers,

Lee, Lodewyckx, & Iverson, 2008). For clarity, we report all BFs in the direction of showing

evidence in favor of the alternative hypotheses (BF10). This means that larger BFs indicate

more evidence for a difference between conditions. BFs near 1 indicate ambiguous evidence

– the likelihood of the null and alternative hypotheses are about equal – and BFs much

smaller than one indicate evidence in favor of the null hypothesis. We referred to (Jeffreys,

1961) for interpretation of BF10.
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5.3.1 Flight Metrics

We assessed the accuracy of landing data by borrowing appropriate precision mea-

sures from ballistic sciences. Participants were instructed to land at a specified and marked

point in the virtual environment (centre of a sand bank). We measured the absolute dis-

tance from this landing zone (LZ) to the actual landing location (“landing error”) and the

“circular error probable” (CEP), which is the median error radius (Nelson, 1988, p.1). We

analysed landing data using CEP for each the first landing zone (LZ1) and third (LZ3).

Landings at LZ2 were aborted – by design. LZ3 did not utilize any landing symbology,

making it a useful control condition. At LZ1, landing accuracy (defined by median absolute

distance from the defined LZ in meters) was significantly improved with 3D landing sym-

bology. The average distance from the defined LZ was 6m (SD = 6m) with 3D symbology,

compared with 40m (SD = 41m) for conditions without symbology, and 61m (SD = 65m)

with 2D Symbology. A Bayesian repeated measures ANOVA showed a reliable main effect of

symbology (BF10 = 3.01), although evidence was ambiguous for the difference (in distance

from the target) between 3D symbology and 2D symbology (BF10 = 2.55) and between 3D

symbology and without symbology (BF10 = 1.71). At LZ3 there was no reliable difference

between levels of symbology (BF10 = 0.23). These results are depicted graphically as CEPs

in Figure 5.2. Further to these results, landings in the 3D Symbology condition were more

tightly clustered, exhibiting less variability.
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Figure 5.2: CEP plots at LZ1 for each environmental condition across all levels of sym-
bology. The cross at the centre of the circle denotes the defined landing zone, with asterisks
marking the actual landings in each condition. The yellow circle marks the CEP result for
each condition. The CEP value is included in the top right of each plot.

7

The second key performance indicator was comparison to flight targets. The first

flight instruction concerned the path between waypoints LZ1 and waypoint E, which followed

a river. Pilots were to maintain radar altitude of 200ft and ground-speed of 80 knots. We

allowed an absolute deviation of 15 knots, and a +100, -50 ft deviation for altitude (derived in

consultation with experienced military pilots). Figure 5.3 shows the proportion of each flight

spent outside of these mission-critical parameters (altitude and speed). Bayesian ANOVAs

showed a preference for the model which included the effect of symbology, environment and

an interaction (BF10 > 1, 000). In both measures (altitude and speed), the 2D symbology

condition shows a greater proportion of time outside of the indicated boundaries (BF10 >

1, 000). There is also evidence for an interaction effect between Symbology and environment

(BF10 > 1, 000), such that 2D symbology fares much worse in night conditions.
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Fi g u r e 5. 3: L eft p a n el;  M e a n pr o p orti o n of ti m e t h at pil ot s v oi d e d t h e  mi s si o n b o u n d s
f or altit u d e (i. e. fl e w a b o v e 3 0 0ft or b el o w 1 5 0ft) a cr o s s p arti ci p a nt s f or t h e t hr e e l e v el s
of s y m b ol o g y.  Ri g ht p a n el;  M e a n pr o p orti o n of ti m e v oi d e d t h e  mi s si o n b o u n d s i n s p e e d
(i. e. fl e w a b o v e 9 5 k n ot s or b el o w 6 5 k n ot s) a cr o s s p arti ci p a nt s f or t h e t hr e e l e v el s of
s y m b ol o g y.  Err or b ar s s h o w t h e 9 5 % c o n fi d e n c e i nt er v al, a n d ar e t o o s m all t o s e e d u e t o
t h e l ar g e a m o u nt of d at a –  w hi c h  mi ni mi s e d err or.

At  L Z 2, pil ots  w er e i nstr u ct e d t o a b ort l a n di n g  w h e n t h e y a p pr o a c h e d v er y cl os e

( a “ g o ar o u n d ”).  F or t his l o c ati o n,  w e a n al y z e d  mi ni m u m altit u d e a n d ti m e b el o w t h e s et

altit u d e.  T h e t ar g et altit u d e  w as 2 0 f e et r a d ar altit u d e,  wit h “ br o w n- o ut ” o c c urri n g  w h e n

t h e pil ot r e a c h e d ar o u n d 1 2 0 f e et.  We c o n d u ct e d  B a y esi a n r e p e at e d  m e as ur es  A N O V As o n

t h e  mi ni m u m altit u d e r e a c h e d b y pil ots f or t h e e n vir o n m e nt al a n d s y m b ol o g y c o n diti o ns,

w hi c h s h o w e d a pr ef er e n c e f or t h e  m o d el t h at o nl y i n cl u d e d t h e e ff e ct of s y m b ol o g y ( B F 1 0 =

2 4 .1 4).  T h e hi g h est  mi ni m u m altit u d e  w as o bs er v e d i n t h e c o n diti o n  wit h o ut s y m b ol o g y

( M  = 3 3ft),  w hi c h  w as hi g h er t h a n t h e 2 D s y m b ol o g y ( M  = 2 2ft; B F 1 0 = 1 1 .8 7) a n d 3 D

s y m b ol o g y c o n diti o ns ( M  = 2 4ft; B F 1 0 = 1 1 .3 4 6).  N o di ff er e n c e  w as f o u n d b et w e e n t h e

2 D a n d 3 D s y m b ol o g y c o n diti o ns f or t his  m e as ur e ( B F 1 0 = 0 .4 4 4).  C o nsi d eri n g t h e r el ati v e

dist a n c es of t h es e altit u d es fr o m t h e t ar g et altit u d e, t h es e r es ults s h o w pil ots i n t h e c o n diti o ns

wit h s y m b ol o g y pr es e nt  w er e a bl e t o fl y cl os er t o t h e t ar g et t h a n t h os e i n t h e c o n diti o n

wit h o ut s y m b ol o g y.  A  B a y esi a n r e p e at e d  m e as ur es  A N O V A o n ti m e (i n s e c o n ds) s p e nt u n d er

t h e t ar g et  mi ni m u m altit u d e s h o w e d a pr ef er e n c e f or t h e  m o d el  w hi c h i n cl u d e d s y m b ol o g y

(B F 1 0 = 3 .7 0).  Pil ots s p e nt  m or e ti m e u n d er t h e t ar g et altit u d e  wit h 2 D s y m b ol o g y ( M  =

1. 2 9s e c) c o m p ar e d t o n o s y m b ol o g y ( M  = 0. 3 0s e c; B F 1 0 = 2 .3 7 5) a n d 3 D s y m b ol o g y ( M  =

0. 4 2s e c; B F 1 0 = 2 .6 1 3).
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Further measures such as flight duration, flight variability across the vertical and

horizontal planes were also recorded, but were not reported here, as they fail to add additional

insight into flight performance over a longer distance. 8

From the flight performance data, it is clear that operationalizing optimal flight

performance can be challenging. Whilst flight variability provided some insight into per-

formance, and provided data across the entire course of the trial, it is not very informative

about flight success and is confounded with highly-trained responses to change flight strategy

in different environmental conditions. The CEP plots are limited to only a single value for

each flight, yet provide a precise and objective measure of pilot’s performance (at least at

landing).

5.3.2 DRT

Mean response time was higher in the unsuccessful landing conditions than in the

successful landing condition. Bayesian ANOVAs showed a strong preference for the model

that included the main effect of landing for log RT (BF10 = 1.588×1010). Whilst informative

in showing the significant increase to cognitive workload during a failed landing, we opted

to remove these trials due to the high rate of misses to give a clearer assessment of DRT

responses. Pilots were asked to repeat any trial where there was a crash or failed landing.

A two-way Bayesian ANOVA of log RT showed a strong preference for the model

that included the effect of symbology (including the condition without symbology), visual

condition and the interaction effect (BF10 > 1000). A comparison of visual conditions showed

strong evidence of a difference between the High and Low visual conditions (BF10 > 1000).

A comparison of symbology conditions showed ambiguous evidence of a difference between

the 2D and 3D symbology conditions (BF10 < 3). A two-way repeated measures Bayesian

ANOVA of misses was ambiguous, reflecting the relatively small number of missed DRT

events (all BF10 < 3). Figure 5.4 shows log RT for 0D symbology condition in comparison

with 2D and 3D symbology across High and Low visibility conditions. The interaction effect

8This is a constant challenge in dual-task workload measurement, and as I have shown in earlier chapters,
and continue to show in later chapters, is crucial to trade off evaluation. Here it was difficult to find an
objective, evidence based (or even agreed upon) criterion for quality flight performance – performance is
highly subjective.
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is s h o w n h er e,  w h er e t h e di ff er e n c e b et w e e n  Hi g h a n d  L o w visi bilit y is e x a g g er at e d i n 0 D

s y m b ol o g y, a n d  m o v es cl os er t o g et h er as  m or e s y m b ol o g y is a d d e d.  T his i nt er a cti o n e ff e ct

s u g g ests t h at s y m b ol o g y  m a y  m o d er at e  w or kl o a d i n hi g h di ffi c ult y c o n diti o ns, b ut  m a y b e

u n n e c ess ar y i n l o w di ffi c ult y c o n diti o ns.

Fi g u r e 5. 4: M e a n  D R T l o g  R T f or e n vir o n m e nt al c o n diti o n s a cr o s s s y m b ol o g y c o n diti o n s.
L o g  R T i s u s e d t o n or m ali z e a cr o s s p arti ci p a nt s.  Err or b ar s ar e 9 5 % c o n fi d e n c e i nt er v al s.

A d diti o n all y,  m a n y pri or st u di es h a v e e x pl or e d b ot h  m ai n t as k p erf or m a n c e a n d

c o g niti v e  w or kl o a d, h o w e v er, t h er e ar e li mit e d att e m pts t o j oi ntl y a n al ys e t h es e. I n  Fi g ur e 5. 5

a n d  Fi g ur e 5. 6,  w e pr o vi d e a n o v el, t h o u g h r u di m e nt ar y, c o m bi n e d a n al ysis of b ot h fli g ht

p erf or m a n c e a n d c o g niti v e  w or kl o a d.  T h es e fi g ur es s h o w t w o c o n diti o ns ( ni g ht ti m e  wit h 2 D

a n d 3 D s y m b ol o g y) f or o n e pil ot.  We t er m t his a n al ysis a “ w or kl o a d h e at  m a p ”,  w h er e a

pil ot’s fli g ht p at h is pl ott e d i n c ol o urs t h at i n di c at e t h eir  D R T r es p o ns e l at e n c y ( c al c ul at e d

as a  m o vi n g a v er a g e r es p o ns e ti m e),  w hi c h is a  w ell est a blis h e d pr o x y f or t h eir c o g niti v e

w or kl o a d.  H e at m a ps f or e a c h pil ot i n e a c h c o n diti o n ar e i n cl u d e d i n h t t p s : / / o s f . i o /

2 n t x w / .
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Figure 5.5: Workload heat-map for the 2D Night condition for Pilot 2. The x and y
axes show latitude and longitude respectively, with the z axis showing altitude. The line
displays the flight path that the pilot took. Moving average DRT RT is plotted as colour
across the flight for five bins.
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Figure 5.6: Workload heat-map for the 3D Night condition for Pilot 2. The x and y
axes show latitude and longitude respectively, with the z axis showing altitude. The line
displays the flight path that the pilot took. Moving average DRT RT is plotted as colour
across the flight for five bins.
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5.4 General Discussion

Modern information systems and technological advances aim to assist operators,

drivers, and pilots, but often fail to account for the impact on cognitive workload. Complex

human machine interactions already present a myriad of information sources, and so before

adding to these, it is important to evaluate the impact this information has on the operator

(Gerjets et al., 2014; Thorpe et al., 2019). Helicopter environments are highly complex, and

so adding more information to the pilots’ heads-up-display could potentially prove harmful

rather than helpful. The current study used the DRT to evaluate how adding information

to a helicopter HUD affected pilots’ cognitive workload. Further, we evaluated several flight

metrics in an attempt to account for main task performance trade-off.

Results indicated that the DRT was sensitive to workload changes for environmen-

tal factors. DRT responses were slower with more difficult flight scenarios, indicating that

workload increased in visual conditions of higher difficulty. Contrary to our hypotheses,

DRT response times indicated that cognitive workload was relatively unaffected by addi-

tional HUD information, with no difference shown.9 Importantly, an interaction effect was

found between symbology and visual conditions, which showed the visual condition having

little affect on the 3D condition, but a greater affect on the 2D and 0D condition. This

interaction effect is important for future HUD developments, as workload is moderated by

symbology in various environmental conditions, which could potentially add unnecessary

workload. The interaction effect between symbology and environment provides evidence of

a telling story for the importance of user interface evaluation across a variety of conditions.

Figure 5.4 shows this interaction which includes the effect of the between-subjects “no sym-

bology” condition. Noticeably, the difference between High and Low visual conditions in the

“no symbology” condition provides an insight into the utility of symbology. This provides

evidence for the need for an adaptive interface, as, in clear day conditions, adding symbology

increases workload - i.e. where it is not necessary. However, in the night conditions, adding

symbology actually lowers workload in comparison with “flying blind”. 10

9In regards to earlier results, this is similar to those shown in Chapter 3, where there was no difference
shown between DRT stimulus type. Here however, in keeping with distraction literature, this finding shows
that the more dense information – 3D – had seemingly no distracting effects on workload.

10Throughout this thesis, i have identified several results patterns where I highlight that increased workload
may or may not be acceptable given context. In this context, it is clear that landing the aircraft is more
important than workload – as the workload effects are minimal at most.
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Unlike Coleman et al. (2016) and Strayer et al. (2017), our results show that the

additional information given to operators may not necessarily cause workload increases.

Compared to driving contexts, the helicopter context appears to be much more cognitively

demanding, and so this lack of difference in symbology conditions may be a result of a

ceiling effect on workload. Alternatively, it may also be plausible to posit that the extremely

experienced and highly trained helicopter pilots may be able to more efficiently allocate

cognitive resources in order to overcome potential distractors. Research in driving literature

suggests this is an unlikely explanation, with Cooper and Strayer (2008) showing no effects of

practice on participants ability to overcome distractions. This finding could also be explained

by the quality of the heads-up display stimuli, with 3D images more readily perceived than

2D (Dan & Reiner, 2017), meaning that although there was a greater amount of information

available, it was moderated by how easily it was perceived – and how useful it might have

been to the successful completion of the mission. Regardless of these contributing factors, it

is clear that the extra symbology does not add additional cognitive workload to experienced

pilots in the helicopter simulator. 11

Aside from effects of the symbology, the current study does show the usability and

sensitivity of the DRT in a previously unexplored environment. The reliability and validity

of the DRT has been well documented in driving environments to assess the drivers cognitive

workload, however, there are limited applications in other scenarios or environments. With

DRT results indicating higher levels of workload for more difficult conditions, we provide

evidence that results translate across domains and show the applicability of the measure to

helicopter simulator settings.

Figure 5.5 and Figure 5.6 (and further figures in https://osf.io/2ntxw/) show a

novel approach to jointly evaluate cognitive workload across a flight, an analysis we term

“workload heatmap”. This analysis shows not only the sensitivity of the DRT, but also

provides scope for future analysis to track workload across the duration of a task.12 The

“workload heat map” analysis may not be subjected to simple statistical comparison between

11This study differs from prior DRT studies in that, rather than purely evaluate distraction, we also
evaluate usefulness of the symbology. Here we show that the symbology is useful to flight performance, and
this test is critical for dual-task workload evaluation, as often workload may increase, but sometimes, that
increase is beneficial. I will discuss this again later in the conclusions.

12In addition to this, joint modelling of tasks could potentially solve this problem of considering simulta-
neous task performance. For this, a framework of joint modelling dual-task workload measures must first be
developed.
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conditions, but gives a visual reference to workload distributions across the flight path. We

view this type of exploratory analysis as useful for future research (in order to manipulate

workload) and for developers of adaptive interfaces.

In regards to flight performance, we analysed a variety of measures to form an

objective view of flight quality. Initially we used several “gates” to assess flight performance.

This is a commonly used technique in pilots’ training and offers a good benchmark for pilots

to achieve. The gates provide a marker of performance only for a limited number of locations

during the flight, and it is difficult to draw conclusions from the specific gate-locations to the

entirety of the task. Secondly, we assessed flight variability. We proposed that an optimal

flight would follow a smooth trajectory, on both the horizontal and vertical planes, where

sharp movements were indicative of performance lapses. However, over such a long and

demanding flight path, which required constant positional adjustments, it was difficult to

quantify this measure. Although flight variability gave some indication of the flight path,

this was more indicative of the strategy taken (for example at night, it is advised that pilots

fly lower) than of flight quality (as a good flight given the conditions may require high

variability). Finally, we measured landing precision across the different environmental and

symbology conditions.

Landings were a key criteria for the development of the added symbology, as it was

used to assist pilots in difficult landing environments. The helicopter simulator was modelled

on an Airbus MRH90, an aircraft commonly used in combat zones which require multiple

and frequent landings. Consequently, the landing performance across the levels of symbology

was a key measure of flight performance, despite only offering a single value for the entirety

of the flight. The CEP plots presented in Figure 5.2, provide a clear indication of landing

performance across landing zones. This analysis showed landings were more accurate for

conditions of 3D symbology compared to conditions of no symbology and 2D symbology.

This is a main finding for the current study, as it shows that the increased information

provides assistance in difficult landing scenarios (such as at night and in brown–out). Results

across environmental conditions show little variance within the 3D symbology condition, but

degraded visual conditions have far greater impacts on the condition without symbology and

the condition with 2D symbology. Although this metric generalizes performance across the
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entire flight to a single instance, it is useful when assessing the impacts of increased visual

information.

Overall, results indicated that flying in degraded visual conditions led to higher

cognitive workload and had a negative effect on flight performance (as indicated by flight

variability and landings). Further, flight performance was unaffected by visual degradation

when pilots were provided with 3D symbology. Assessing the flight performance in conjunc-

tion with the workload measure allows a more in-depth understanding of the effects of added

information: 3D symbology adds no measurable workload, whilst assisting the pilots’ flight

performance. These results indicate that the 3D symbology may not always be useful for

pilots, but is beneficial for night flying at no workload cost. These results show the effec-

tiveness of the DRT as a cognitive workload measure outside of the driving environment and

highlights the sensitivity of the DRT as a cognitive workload measurement tool for answering

previously inaccessible questions.

The current study was limited by the total number of participants and a restricted

stimulus set. Future studies should attempt to quantify what exact information is most useful

to pilots, or whether certain symbology elements induce extra workload. Further studies

should look to assess the impact of this symbology in more advanced simulators through

to real-world helicopter contexts, where the difficulty, and realism, of flying is increased.

The impact across conditions of workload should also be assessed to understand whether

an adaptive interface is more useful, where the level of information is updated given the

difficulty of the current task.

5.4.1 Conclusion

The study offers a unique investigation into pilots’ cognitive workload in a high-

fidelity flight simulator. The analysis combines various flight metrics with simultaneous

assessment of workload via the DRT. The analyses are somewhat limited by the lack of

clear optimal main task performance definition and conjoint dual-task analysis. Similar to

much cognitive workload literature in driving, it is often difficult to operationalize optimal

main task performance, or provide a highly sensitive measure of main task performance. We

have attempted to incorporate a variety of meaningful flight analysis alongside the cognitive
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workload measures to form a more rounded analysis of this exploratory study. The most

telling results generally indicated the expected trends, with little flight path variability be-

tween conditions, but a greater effect of added information observed in landing data, where

increasing the symbology consistently led to more accurate landings. Flight patterns were

shown to vary between environmental conditions regardless of symbology, however landings

were highly affected by symbology. Furthermore, the workload measures indicated that the

increased symbology added no extra workload, and moderated workload in more degraded

visual conditions.
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6.1 DRT as a measure of capacity excess: Overview

Following on from Chapters 4 and 5, where I show the usefulness of the DRT as

a tool to evaluate displays and additional information, the current chapter has two aims:

primarily to use the DRT-MOT as a tool to measure individual differences in cognitive

capacity excess, and secondly, to further validate the DRT-MOT design by distinguishing

between groups in performance. The DRT has previously been used to evaluate sources

of potential distraction, and furthered as a useful tool in evaluating usability of designs,

but it is yet to be used to establish individual differences. Evidence for between subject

capacity differences exist in systems factorial technology literature (Eidels et al., 2010, 2015;

Townsend & Eidels, 2011), and further, cognitive workload literature has shown evidence for

large individual differences in dual-task performance (Medeiros-Ward, Watson, & Strayer,

2015). Given the nature of the DRT, where multiple responses are collected per subject, we

may be able to distinguish between groups (and by extension between individuals) provided

that between subject capacity differences exist. It is theorized that cognitive workload is

underpinned by individuals’ cognitive capacity, so if these differences do exist, the DRT

is positioned as a primary tool to assess capacity. When referring to cognitive capacity, I

refer to the excess residual resources, a difference between available and allocated resources,

rather than capacity in a systems architecture sense. For this reason, I consider the DRT a

measure of cognitive resource excess where individual differences in workload under common

task load can infer individual differences in cognitive capacity.

To assist in readability of the introduction, below I summarise the main experimental

steps taken to provide context. The primary purpose of this chapter, in using the DRT-MOT

as a measurement tool, was motivated by an industry collaboration formed with the ADF

group. In the current experiment, I had privileged access to collect data from a cohort of

highly trained military personnel, who had been shortlisted for a role based on physical and

cognitive criteria. This cohort was recruited from the an elite unit in the Australian Defence

Force1 in a candidate selection program for a highly specialised, and sought after, role.

The selection program was for the combat controller position – a position which entails air

traffic, and ground traffic, tactical control in war zones. This cohort was expected to be more

1Due to privacy concerns from this group, I will refer to this group as the ADF group throughout this
thesis.
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proficient in this task, based on the selection criteria needed to be selected as a candidate, and

more motivated to perform in the DRT-MOT paradigm. Initially, I tested whether results of

the difficulty manipulation in the DRT-MOT paradigm held for the RAAF cohort, as shown

in previous chapters. Secondly, results of the RAAF group were compared to a control

student group – where it was expected that the RAAF would outperform students. Thirdly,

in the student comparison group, participants were tested either online or in-lab to observe

whether results held across platforms. Finally, a cohort of qualified combat controllers were

tested in order to assess the external validity of the task. These participants had been in

the combat controller role for a number of years prior to testing. These four steps form the

basis of this chapter, with relevant literature and context provided below.

6.2 Experiment 4: Differentiating Groups and Individ-

uals

In many psychological constructs, it is common to observe differences between indi-

viduals and groups. These differences can come about through a variety of factors, such as

the strategy people choose to complete a task, inherent physiological differences, transference

from training, motivation and much more. Many experimental paradigms compare groups

in order to understand what factors contribute to performance differences. Valid behavioral

paradigms are able to quantitatively distinguish between these groups, where differences are

known to exist (Davidson, 2014), in domains such as decision making (Heathcote et al., 2015;

Wall et al., 2019), response speed (Rabbitt, 1979) and memory (Grober, Buschke, Crystal,

Bang, & Dresner, 1988).

In broader cognitive psychology research, group differences have been shown in a va-

riety of behavioural paradigms between control subjects (generally undergraduate students)

and subjects of older age groups (Forstmann et al., 2011), personality groups (Evans, Rae,

Bushmakin, Rubin, & Brown, 2017), clinical groups (e.g., depression and schizophrenia; Dil-

lon et al., 2015; Heathcote et al., 2015), and groups differing in blood alcohol levels (van

Ravenzwaaij, Dutilh, & Wagenmakers, 2012). These groups all tend to show a cognitive

deficit, where in these examples, response time and accuracy is impaired – likely due to
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underlying cognitive processes which differ from the the controls. In the current experiment,

I had privileged access to a RAAF combat controller selection group of participants who had

been selected based on cognitive and physical factors. In testing this group, there are two

main differences which exist from previous forms of known-groups testing: first, the RAAF

group are assumed to show a cognitive advantage rather than deficit and secondly, this dif-

ference is not “known” but rather assumed. In evaluating the DRT-MOT task within this

framework, I assume that, if the RAAF group do show a higher performance in comparison

to student controls, then this corresponds with an increased ability and provides validation

of the DRT-MOT to distinguish between groups. In regards to cognitive workload and ca-

pacity – the construct being measured by the DRT-MOT – there is precedence to suggest

that differences exist between groups and individuals.

Medeiros-Ward et al. (2015) have shown evidence for people who are much more

efficient than the average person at multi-tasking, using their “super-tasker” paradigm. The

super-tasker paradigm is a short dual n-back task, requiring participants to attend to both

auditory and visual stimuli whilst remembering response rules. The researchers showed that

a subset of their participants were able to perform the dual-task at the same accuracy as

the single n-back task, hypothesizing that these individuals were “super-taskers” and had

an innate ability to multitask. This could be due to a higher degree of cognitive control, an

inherent ability to more easily switch between tasks, greater experience with multitasking,

more experience with mentally manipulating the type of information presented in the n-back

task or a higher overall cognitive capacity. Importantly, the paradigm is able to identify the

high performers (super-taskers). This literature links closely with cognitive workload, as

individuals who exhibit super-tasker profiles are likely to have higher cognitive capacity, or

greater efficiency in a workload paradigm.

Group differences in cognitive workload have also been observed in prior behavioral

research. Watson and Strayer (2010) highlighted a cluster of outliers on a difficult distracted

driving task, whose performance was much higher than the average – they showed no appar-

ent performance decrease in cognitively overloading scenarios. Watson and Strayer (2010)

note that the reasons for the heightened ability of super-taskers is difficult to quantify, but

is likely an inherent trait or may be trained from completing highly demanding tasks on a
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regular basis. This evidence is complimented by research using Systems Factorial Technol-

ogy where individual differences in cognitive capacity are shown (Townsend & Eidels, 2011;

Townsend & Wenger, 2004a) and results from further DRT paradigms, evidencing workload

differences between individuals (Conti et al., 2012). Additionally, Jaeggi et al. (2007) showed

neural differences between individuals when performing at a high capacity, or exceeding their

cognitive capacity, giving evidence that capacity differences may be underpinned by phys-

iological mechanisms. Alternatively, Vidulich and Wickens (1986) highlight that increased

performance could be due to motivation factors, where higher motivation leads to increased

concentration or performance value.

In addition to differentiating between groups, many cognitive tasks highlight differ-

ences between individuals. The study by Medeiros-Ward et al. (2015) is a prime example of

this, where the dual n-back paradigm accurately differentiates participants in effective mul-

titasking. In prior experiments, results from the DRT-MOT paradigm has indicated some

individual differences – which is shown in the previous chapter (where some individuals per-

formed at a high level despite the impairing text assistance and others performed similarly

well with and without assistance). Individual differences are commonly observed across many

cognitive behavioural paradigms, however, disentangling ability from noise is often difficult.

In the DRT-MOT paradigm, if two individuals are performing the MOT task with the same

accuracy, then their DRT results provide an indication of the underlying workload differences

between individuals. This trade-off in performance is important in understanding results of

the DRT-MOT.

The primary aim of the present chapter is to use the DRT-MOT as a tool to dif-

ferentiate individuals. This aim was motivated by our collaboration with the ADF group to

assist them with combat controller candidate selection. It was proposed that the DRT-MOT

task be used in addition to pre-existing selection metrics as a measure of residual cognitive

capacity. The specifics of these selection metrics have been withheld here due to privacy con-

cerns, however they mostly entailed several days of intense testing of physical and cognitive

capabilities, as well as assessing fatigue management, resilience and emotional intelligence

skills. The construct of cognitive capacity is thought to be of high importance to the combat

controller role. Thus, it was important to select candidates who showed high performance
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in the DRT-MOT, or, more importantly, selected candidates should perform above a certain

level.

In order to achieve these outcomes, the experiment included four main testing stages.

Initially, the combat controller candidates completed the DRT-MOT task. For this analysis,

it was expected that similar trends would be observed for DRT-MOT results as previous

experiments (i.e. workload captured as difficulty increased). Secondly, I compared a control

group (students) to the RAAF group on the same task. This second step was used as a

“known-groups” testing stage, where it was expected that the combat controller candidates

would outperform students based on their motivation to perform and their cognitive ability.

Furthermore, aside from showing differences between the groups – i.e. the combat controllers

are different to students – it was important to validate the design. To do this, I tested two

student cohorts; an online cohort and an in-lab cohort. Prior research has indicated that re-

sults from cognitive paradigms hold regardless of environment - online or in-lab (Dandurand,

Shultz, & Onishi, 2008; Gosling, Vazire, Srivastava, & John, 2004; Krantz & Dalal, 2000;

Meyerson & Tryon, 2003). In the current experiment, I expected to see similar performance

between online and in-lab participants. Further, if participants do differ in performance

across testing platforms, the RAAF group can be compared to the in-lab participants to

control for this factor (as the RAAF group were tested in-lab). Finally, to test the external

validity of the DRT-MOT paradigm, I tested a cohort of qualified combat controllers, who

had completed the training and had experience in the role. Comparing the candidate RAAF

cohort to the qualified RAAF cohort, provided a form of validation for the task as a selection

metric – i.e. qualified personnel performed highly. The results of this comparison are useful

in selection decisions – i.e. a benchmark.

In the current experiment, I used the DRT-MOT paradigm as shown in Chapter 3

and Innes and Kuhne (2020). Participants completed three levels of difficulty of the MOT.

I hypothesized that for all groups, response time and miss proportion in the DRT would

increase with MOT difficulty. I also hypothesized that MOT accuracy would decrease as

difficulty increased. For the groups, I hypothesized that the RAAF group would outperform

the student group in both tasks. I also expected to see the in-lab and online student cohorts

performed equally . Finally, I expected the qualified RAAF cohort to show similar results

to the candidate RAAF cohort, and outperform both student cohorts.
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6.3 Experiment 4 - Method

6.3.1 Participants

In total four cohorts completed the task. The breakdown of these cohorts and re-

spective groupings can be viewed in Table 6.1. The RAAF group was comprised of two

cohorts of Royal Australian Air Force personnel; one who were selected as candidates to

train for a combat controller course and the other who were qualified combat controllers.

There were 53 candidate RAAF participants who completed the experiments in three dif-

ferent sessions. The candidate RAAF cohort were given no incentive to complete the study,

however, their results were used in the selection process. The qualified combat controller

cohort was comprised of 12 personnel who completed the task as part of their professional

development. The online cohort consisted of 63 University of Newcastle psychology under-

graduate students who completed the task in their own time online. The Student cohort

was also comprised of undergraduate psychology students from the University of Newcastle,

however, these students completed the task at the same time at the University, similar to

the the RAAF personnel. There were 26 participants in this cohort. Both student cohorts

received course credit for completing the study. In total, 154 participants completed the

task. Eight subjects (five online, two students, one RAAF) were removed due to computer

errors in recording data (where false alarms were wrongly recorded – four participants) or

poor performance (DRT miss proportion greater than 50% or MOT accuracy less than 50%

for either of the two least difficult conditions).

6.3.2 Tasks

Participants simultaneously undertook the DRT-MOT paradigm. The MOT was

displayed on a computer in front of the seated participants, and the DRT was displayed on

the screen as a red frame around the MOT display area – identical to the DRT stimulus used

in Chapters 3 & 4. There were three levels of workload in the MOT; 0, 1 or 4 dots to track,

which was manipulated within-subjects. All participants completed the same task.
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6.3.3 Procedure

The RAAF group completed the task on a computer simultaneously in a room of 20-

30 computers (as data was collected over several intakes, the room size often varied, however,

participants in each intake completed the experiment in the same room). Participants were

given individual identification numbers which were used to conceal identity. Participants

were given instructions on screen which first introduced the DRT procedure. Participants

completed a practice block followed by nine test phase blocks. Each block consisted of ten

trials of the MOT, with the exception of the practice block which only consisted of three

trials, of random difficulty. Within each test block, all of the trials used the same number

of dots to be tracked: either 0, 1 or 4. Each of these levels of load was used for three

blocks, giving a total of 30 MOT trials for each load condition. Participants were given

breaks between blocks, and the total time taken to complete the experiment was between

1-1.5 hours. The students who completed the study in-lab followed the same procedure as

the RAAF group. An experimenter was present to supervise students. The online cohort all

received the same instructions and carried out the experiment following the same procedure

as the RAAF and student cohorts, but completed the experiment in their own time and with

their own computer, without the presence of an experimenter.

Cohort Group Number Location Reimbursement

Combat Controller Candidates RAAF 53 (1) In lab part of training course

Qualified Combat Controllers RAAF 12 In lab professional development

In lab students Student 26 (2) In lab course credit

Online students Student 63 (5) Online course credit

Table 6.1: Participants breakdown showing the numbers of participants from each group
and exclusions in brackets. Also shown in the table is reimbursement for each cohort.

6.4 Results

The present analysis follows Section 3.2.4.
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6.4.1 General Results

The study was treated as a two-way design, with the within-subjects variable of

difficulty (0,1,4) and between-subjects factor of group (student or RAAF). The online and

student cohorts were grouped as there was no difference observed between these cohorts

for all dependent variables (as shown in Section 6.4.4). For the DRT, response time and

proportion of missed responses were assessed, whilst for the MOT response time and accuracy

were assessed. Mixed, repeated-measures Bayesian ANOVAs were conducted for each of the

above measures of interest – between subjects factor of groups and within subjects factor of

difficulty. The analysis was conducted using the “BayesFactor” package in R, with default

priors (set at 0.707) (Morey & Rouder, 2013). For the ANOVA results, I will again refer to

BFInclusion (from the “bayestestR” package) as the amount of evidence that data are likely

under a model containing a given predictor compared to models without this predictor.

Results of the Bayesian ANOVAs are presented in Table 6.2.

Overall, both groups performed the MOT task well, with a mean MOT accuracy of

88.07% (SD = 15.55%) and a mean MOT response time of .805 s (SD = .695). Figure 6.1

below shows both the change in MOT performance across the levels of difficulty and the

difference in performance between the groups. Mean accuracy declined as difficulty increased

for both groups, with the RAAF group exhibiting higher accuracy, and mean MOT response

time slowed as difficulty increased, with a crossover effect shown between the groups with

the effects of difficulty. Bayesian ANOVAs confirmed these trends, as shown in Table 6.2,

which indicated strong evidence for the effect of group and difficulty on MOT accuracy, and

strong evidence for the effects of difficulty, group and the interaction on MOT response time.

These results indicate that increased difficulty lead to lower accuracy and higher response

times in the MOT across groups. Results also indicated strong evidence for the effect of

groups, with the RAAF group showing higher accuracy than the students. Furthermore,

there was evidence for an interaction effect between group and difficulty on MOT response

times, with RAAF response times slowing at a greater rate for the effect of difficulty – being

faster than students in the 0 dot condition and slower than students in the 4 dot condition.

Furthermore, Bayesian t-tests highlighted the reliability of these results, showing differences

between groups across all levels of difficulty for MOT accuracy (0 dots – BF10 = 6.53;

1 dot – BF10 = 83.09; 4 dots – BF10 = 49.57). Bayesian t-tests also showed evidence



Chapter 6 DRT as a measure of individual differences 99

for a difference between groups on mean MOT response time for the highest difficulty, with

ambiguity shown in the lower difficulty conditions (0 dots – BF10 = 1.04; 1 dot – BF10 = 0.52;

4 dots – BF10 > 1000). These results indicate that the MOT difficulty manipulation showed

a change in performance, with performance differences shown across groups.

BFInclusion DRT RT DRT Miss MOT RT MOT acc
difficulty >1000 >1000 >1000 >1000

group >1000 396.26 >1000 >1000
difficulty:group 47/100 41/100 >1000 1.28

Table 6.2: BFinclusion factors across dependent variables (columns) for each predictor
(rows). BFinclusion with sound, or greater, evidence are shown in bold. BFinclusion shown
as fractions represent evidence for null effects of the given predictor. BFinclusion greater
than three represent evidence for the effects of a given predictor, whilst BFinclusion less
than a third represent evidence against the effects of a given predictor.

Figure 6.1: Performance on the MOT across groups. Left Panel : Accuracy in the MOT
across levels of difficulty for the two groups. Right Panel : Mean response time in the MOT
decision phase across levels of difficulty for the two groups. Error bars shown are standard
error.

Similarly, the DRT was performed well, with a mean rt of 0.427 s (SD = .194)

and a miss proportion of 2.8% (SD = 4.75%). Figure 6.2 below shows both the change in

DRT performance across the levels of difficulty and the difference in performance between the

groups. Figure 6.2 highlights the effects of difficulty on DRT responding, with slower response

times and higher miss proportions observed as difficulty increased. Further, Figure 6.2

shows that there was no interaction effect on response time or miss proportion – however,

the difference between the groups is observable, with the RAAF group consistently faster
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to respond and showing lower miss proportions than the students. A two-way Bayesian

ANOVA, shown in Table 6.2 confirmed these trends, with evidence for the the effects of

group and difficulty on DRT response time and miss proportion. Bayesian t-tests highlighted

the reliability of this result, with a difference shown between groups across all levels of

difficulty for DRT response times (0 dots – BF10 > 1000; 1 dot – BF10 => 1000; 4 dots –

BF10 = 37.47) and DRT misses (0 dots – BF10 = 40.57; 1 dot – BF10 = 276.243; 4 dots –

BF10 = 34.83). Ambiguity was shown for any interaction effects on DRT response times or

misses. This indicates that the MOT difficulty manipulation affected DRT results, with the

DRT capturing the change in workload across difficulty conditions. Further, these results

indicate that the RAAF group had a lower indication of workload and lapses. As opposed

to the interaction effect shown above, there was no interaction effects observed in the DRT,

indicating that the interaction of difficulty and group on MOT response times may be the

result of a strategy difference in responding rather than a result of workload differences.

Figure 6.2: Performance on the DRT across groups. Left Panel : Mean DRT response
time across levels of difficulty for the two groups. Right Panel : Mean proportion of misses
in the DRT across levels of difficulty for the two groups. Error bars shown are standard
error.

6.4.2 Individual Analysis

With results indicating that the RAAF group outperformed the student group across

all levels of difficulty, it was my next goal to evaluate whether results could distinguish

between individuals. The goal of the ADF group was to use the DRT-MOT paradigm
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as a further selection metric to add to their battery of tests for the position of combat

controller. To assess the cognitive workload capacity, or effective allocation of cognitive

resources, of the participants, we need to evaluate results from both the DRT and the MOT.

DRT results present an indication of the overall workload of an individual across levels of

difficulty. However, this result alone is not sufficient to differentiate between people, as we

do not account for performance in the MOT. Performance solely in the MOT, provides no

indication of workload. Thus, Figure 6.3 shows performance across the two tasks, for all

levels of difficulty, for each individual.

Figure 6.3: Individual analysis for the DRT-MOT task across groups and MOT diffi-
culty. Shown on the x-axis is DRT response time (NOTE: Response time increases right
to left). The y-axis shows MOT accuracy. Each circular point on the graph represents one
individuals data for each group (grouped by rows) and each difficulty condition (grouped
by columns). The colour of the dot indicates the miss proportion for that subject. Also
included on the graph are the means for each group in each difficulty condition – shown
as triangular points. In the graph, high performers are in the top left corner of each panel
(i.e. MOT high accuracy, low DRT response time).
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For this type of graphical analysis, an assumption is made which fits with the theory

of Kahneman (1973). This assumption is that if two participants are completing the MOT

task with the same accuracy, then the participant with the lower workload (i.e. slower DRT

response times) would have a greater overall capacity. This assumption relies on the limited

resources theory, where the main task (MOT) occupies cognitive resources, and the secondary

task (DRT) measures residual resources available. With higher accuracy in the MOT and

lower DRT response times, participants would exhibit a greater cognitive capacity. This

can be seen in Figure 6.3, where participants in the top right of each panel display higher

cognitive ability – be it higher overall capacity, better allocation of resources or more effective

trade-off between tasks. In the figure, I have also included colouring displaying the amount

of misses in the DRT. There are several key trends observable in the data – high performers

are seen in the top right of each panel; participants who are valuing the DRT above the MOT

are seen in the bottom right of each panel; and participants who value the MOT above the

DRT are seen at the top left of each panel. The most apparent condition to separate these

trends, and separate people is the 4 dot difficulty.

Evidently, in the RAAF data at the 4 dot difficulty, there is a subset of participants

who perform at a very high level in both the DRT and MOT (with MOT accuracy above

almost all student participants). Secondly, there is a subset who clearly perform very poorly

in the MOT (at around chance level - 60% accuracy). Finally, there are a number of

participants who perform at an average level in the MOT, but have slower DRT response

times and higher misses – i.e. a higher workload to achieve an average result.

Whilst this graphical analysis is not subject to statistical procedures, it does provide

useful information on performance indicative of residual cognitive capacity. This type of

analysis may not be useful for distinguishing between high performers, however, it is useful

to distinguish high performers from the low performers. With the task indicative of cognitive

workload, this is highly useful given the ADF group’s needs.

6.4.3 Criterion Validity

Further, to provide a level of criterion and face validation, a qualified combat con-

troller cohort were assessed using the same task. 12 qualified combat controllers, who had
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2-14 years of experience in the role, completed the DRT-MOT task following the same pro-

cedure as the candidate RAAF cohort.

A series of Bayesian t-tests were conducted to identify differences between the qual-

ified combat controllers and the candidate RAAF cohort. Figures 6.4 and 6.5 show the

differences between cohorts. Bayesian t-tests showed evidence for null differences between

cohorts in MOT accuracy (BF01 = 5.04) or MOT response time (BF01 = 4.85). This was

similar for DRT results, with Bayesian t-tests showing evidence for null cohort differences in

DRT response time (BF01 = 3.27) and miss proportion (BF01 = 4.68). The small sample of

qualified combat controllers may have contributed to this result, however, Figures 6.4 and

6.5 show the minimal difference between cohorts.

Figure 6.4: Performance on the MOT across RAAF cohorts. Left Panel : Accuracy in
the MOT across levels of difficulty for the two RAAF cohorts. Right Panel : Mean response
time in the MOT decision phase across levels of difficulty for the two RAAF cohorts. Error
bars shown are standard error.
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Figure 6.5: Performance on the DRT across the two RAAF cohorts. Left Panel : Mean
DRT response time across levels of difficulty for the two RAAF cohorts. Right Panel :
Mean proportion of misses in the DRT across levels of difficulty for the two RAAF cohorts.
Error bars shown are standard error.

Figure 6.6 shows the individual analysis, similar to that above, however, I include a

grey shaded rectangle on each panel. This shaded rectangle occupies the area in which qual-

ified combat controllers scored. This makes comparison between the cohorts more evident,

as the outliers in the candidates cohort become more evident. This analysis was similarly

useful to the ADF group, as it gave a “benchmark” or reference point to compare candidates

to already qualified and tested personnel.
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Figure 6.6: Individual analysis for the DRT-MOT task across RAAF cohorts for the 4
dots to track MOT difficulty (highest difficulty). Shown on the x-axis is DRT response
time (NOTE: Response time increases right to left). The y-axis shows MOT accuracy.
Each circular point on the graph represents one individuals data for each RAAF cohort
(grouped by rows - left: qualified combat controllers, right: combat controller candidates).
The colour of the dot indicates the miss proportion for that subject. Also included on
the graph are the means for each cohort in the highest MOT difficulty condition – shown
as triangular points. In the graph, high performers are in the top left corner of each
panel (i.e. MOT high accuracy, low DRT response time). Also included on the graph is a
rectangular annotation, which denotes the area of minimum performance by the qualified
combat controllers. This shaded area extends beyond the values exhibited by qualified
combat controllers into areas which are of higher performance on both the x and y axes.
Participants from the candidate RAAF cohort who fall outside this annotation, were said
to fall outside the “benchmark” performance set by the qualified personnel.

Additionally, an analysis was performed on the qualified personnel, using the number

of years of experience in the role as an added variable. This analysis showed no effect of years

of experience on performance in the DRT-MOT, however, more data is needed to provide

conclusive evidence. This data is difficult to access due to the small number of qualified

combat controller personnel.
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6.4.4 Online vs In lab

Finally, an analysis was undertaken to observe any differences between the online

student cohort (online) and the in lab student cohort (in-lab). I initially proposed the in-lab

experiment as a more valid comparison level to the RAAF group – who completed the task

in-lab. Previous studies have shown similarities across results between online and in-lab

environments (Dandurand et al., 2008; Gosling et al., 2004; Krantz & Dalal, 2000; Meyerson

& Tryon, 2003). Our analysis extended this finding for the DRT-MOT design. It must be

noted in this section that for the removal criteria, a total of five in-lab participants were

removed and only 2 online participants were removed.

A series of Bayesian t-tests were carried out to investigate differences between the

online and in-lab cohorts for MOT accuracy and response times. Figure 6.7 shows MOT

results for accuracy (left panel) and response time (right panel), where there appears to be

no difference in performance. Bayesian t-tests confirmed this, showing evidence for a null

cohort difference on MOT accuracy (BF01 = 6.19) and MOT response time (BF01 = 3.86).

This result is in line with earlier chapters and past online vs in lab research (Birnbaum,

2004; Meyerson & Tryon, 2003), but further, shows the external reliability of the DRT-MOT

design, with consistent trends shown across environments.

Figure 6.7: Performance on the MOT across student cohort environments. Left Panel :
Accuracy in the MOT across levels of difficulty for the environments. Right Panel : Mean
response time in the MOT decision phase across levels of difficulty for the two environments.
Error bars shown are standard error.
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Further, Figure 6.8 shows DRT results for response time (left panel) and miss propor-

tion (right panel), where there appears to be no difference in performance. Bayesian t-tests

confirmed these trends, showing evidence for a null difference of cohort on DRT response

time (BF01 = 6.63) and ambiguity for DRT miss proportion (BF10 = 0.50).

Figure 6.8: Performance on the DRT across the two student cohort environments. Left
Panel : Mean DRT response time across levels of difficulty for the two environments. Right
Panel : Mean proportion of misses in the DRT across levels of difficulty for the two envi-
ronments. Error bars shown are standard error.

6.5 Discussion

The current study had several main purposes, the primary of which was to use the

DRT-MOT paradigm as a tool – including as a selection metric or to differentiate between

individuals. To reach this point, it was necessary to satisfy several other criteria first, as

a means of checking the reliability and validity of results. Results generally followed the

expected trends, however, a greater range of data (and access to data) is needed before

drawing subject specific conclusions. In the following discussion, i will highlight the strengths

and weaknesses of the design, however, overall, it is clear that the DRT-MOT design is reliable

and valid as a tool to distinguish between groups.

Results across conditions of the MOT followed hypothesized trends, and trends found

in previous studies – as difficulty increased (i.e. the number of dots to track), performance in

the MOT decreased and cognitive workload increased. The cognitive workload measure – the
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DRT – again showed sensitivity to changes in MOT difficulty, highlighting that this measure

is reliable, and further, that effects are found across groups. Secondly, group differences were

shown in the DRT-MOT design, with the RAAF group outperforming the students reliably

across task measures. Furthermore, the online and in-lab student cohorts had comparable

performance, showing that the task did not differentiate between groups who should display

similar ability.

This group difference test is important in both validating the DRT-MOT design

as a tool which can differentiate between groups of different people, and highlighting that

expected differences do exist between the RAAF and student groups, but not between the

in-lab and online cohorts. It was hypothesized that the RAAF group would outperform

students, and this trend was shown across dependent measures, however, it is unclear as to

how or why this occurred. Two explanations for this result could be primarily due to moti-

vation factors – as the RAAF group had a greater outcome for good performance (selection

into a desirable role); or due to a increased cognitive ability of the RAAF group. Given

the potential transference from the daily roles undertaken by the RAAF to the DRT-MOT

task, it could be the case that the RAAF group are exposed to more cognitively demanding

scenarios more regularly, and this “training” transfers to the task. Explanations for this

cognitive ability may be due to an increased cognitive capacity, or a more efficient alloca-

tion of resources. These, however, are latent processes which are difficult to observe, and

so greater research, including mathematical modelling procedures, should be done to qualify

these differences.

The second aim of the study on the road to answering the purpose, was to use results

of the DRT-MOT design to distinguish between individuals. Individual differences have long

been observed in psychological research, with it generally known that individuals differ in

their cognitive ability and underlying neural structures. These differences may be inherent

or trained, and may be malleable or fixed. In the current design, the DRT-MOT design was

used as a test of cognitive workload ability, where participants were pushed to their cognitive

limits. In combining results from both the DRT and the MOT, as seen in Figure 6.3 (which

only takes into account performance in the difficult condition), clear patterns emerge. These

patterns are primarily related to a task trade off, where as some individuals do poorly

in both the DRT and MOT, others only suffer in one domain – essentially trading good
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performance in one element of the task to concentrate on the other. In some cases however,

participants performance does not suffer in either domain. These “ideal” participants are the

type of participants the RAAF were looking to select for their program – participants who

showed an increased cognitive workload ability. These participants may have been trading

off between tasks at an optimal amount, or had a greater overall capacity, however, they

were able to effectively deal with the increased cognitive workload imposed upon them.

It is important to question at this point, does high performance in the DRT-MOT

relate to performance in the role in question? To answer this, a further cohort were assessed.

This cohort were qualified combat controllers who had been working in the role for at least

two years. These individuals were regarded as successful as they had been selected from the

candidate pool and had subsequently passed the training and assessment regime. Testing this

cohort showed similar results to the candidate RAAF cohort - they outperformed the students

across dependent measures and showed similarities to the motivated candidate RAAF cohort.

Assessing the combined DRT-MOT results at an individual level was important for external

validity and to use as a “reference point” for candidates. Figure 6.6 depicts these results,

where it is evident that DRT performance is sacrificed less often than the candidate RAAF

cohort, with a form of minimum MOT performance also shown. This cohort of personnel was

limited to only 12 subjects, meaning more data is needed before attaining a true benchmark

to compare against – however, these results are promising for the external validity of the

task as individuals who are employed in the role in question perform at a high level.

In testing the usefulness of the DRT-MOT design as a tool, the preceding results link

together to show a tangible story. The DRT-MOT task is able to distinguish between groups,

and this performance measure can be used to rule out potentially poor candidates. This

study not only shows the usefulness of the DRT-MOT, however, highlights the usefulness of

cognitive workload evaluation and the reliability of the DRT as a measure of overall cognitive

capacity. This DRT methodology could be applied to a range of tasks used in assessment

where roles may require a greater cognitive capacity to be successful. Furthermore, this

design may also be used to evaluate clinical patients, where cognitive deficiencies may be

resulting symptoms of mental health disorders. Further research is needed in this area, but

could provide useful insight to inform treatment and diagnosis.
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The current study evidently has several limitations which future work may overcome.

Initially, a lack of follow up information on the candidate RAAF cohort makes drawing con-

clusions on the success of the design difficult. However, participants may fail the selection

criteria in another unrelated aspect, which would cloud any conclusions to be made from

follow up studies. Secondly, despite candidates undergoing a range of other cognitive testing,

access to this data was restricted due to privacy concerns. Access to this data, as well as

other demographic information (for both student and RAAF groups), may not only allow

insight to correlated cognitive ability, but may also enable a greater picture to be formed of

cognitive capacity and what factors inform this ability. Finally, future research should eval-

uate the test-re-test reliability of the DRT-MOT, as well as observing the effects of cognitive

workload training on results. Test-re-test reliability is important when using this paradigm

as a selection measure to ensure reliability of the design, while testing candidates pre and

post training, would inform our knowledge of factors contributing to increased cognitive

ability.

Overall, the current study showed that the DRT-MOT is effective in highlighting

differences between the student and RAAF groups, and further, in showing these differences,

highlights the validity of the task. Additionally, the combat controller selection panel gained

valuable insight from the data when making selection decisions, showing the DRT-MOT as

an effective tool to measure cognitive capacity under this task.
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7.1 Modelling response times

Computational modelling has become increasingly prevalent in cognitive psychol-

ogy (Farrell & Lewandowsky, 2018). The original goal of cognitive modelling was to offer

deeper insight into experimental data in order to infer the previously inaccessible latent pro-

cesses which underpin behavior. Cognitive modelling has developed into a tool for cognitive

scientists, as it allows us to draw conclusions not only about differences between groups,

individuals or conditions, but also allows us to make inferences about the processes which

may drive these differences.

When applied to behavioural data, there are many examples of successful cognitive

modelling approaches which provide greater depth to analysis. Examples include modelling

perceptual ability using signal detection theory (Green & Swets, 1966), inferring processes

involved in categorization (Farrell, Ratcliff, Cherian, & Segraves, 2006; Nosofsky & Palmeri,

1997), exploring cognitive processes through modelling neural data (Forstmann et al., 2008;

Frank, Scheres, & Sherman, 2007), as well as modelling decision making with evidence ac-

cumulation models (S. D. Brown & Heathcote, 2008; Ratcliff & Rouder, 2000). Cognitive

modelling techniques have enabled researchers to make significant progress in understanding

cognition, as we can now make inferences about latent variables such as level of caution,

processing speed, sensitivity (to change or detection), and factors that drive preference. Ev-

idently, understanding latent cognitive constructs allows researchers to make better use of

data, drawing deeper conclusions and unlocking the so called “black box” that exists between

stimulus and behaviour.

The DRT-MOT design used throughout this thesis has several core components

which lend themselves to cognitive modelling methods. First, the DRT has simple, quanti-

tative output – response times. Secondly, I have shown accuracy measures from the MOT,

however, these fail to provide insight into the tracking process, or even the decision process,

of the MOT. The tracking process has previously been studied through eye tracking data,

however, there is little research into the decision making component of the task. The decision

making component however, is a vital component of the task as this stage provides summary

measures of the task at hand. Since the decision making component has simple correct/error

and response time output, it also lends itself to a modelling framework. The tracking part of
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the task is complex and potentially data rich (with technology such as eye tracking) however,

the object tracking process requires its own model – many of which have been developed

(for examples see; Drew, McCollough, Horowitz, and Vogel (2009); Haritaoglu, Harwood,

and Davis (1998); Koller, Weber, and Malik (1994); Rasmussen and Hager (1998)). Whilst

informative in some contexts, these models do not permit efficient statistical treatments,

and consequently this, and the need for different experimental designs (such as eye tracking

and/or closely manipulated object paths), limit the potential relevant applications. Using

the data available from the current design, we can infer the “success” of the tracking phase

through modelling the decision stage. Here our decision making model can be fit to data,

where tracking ability, or success, drives an underlying cognitive processes in the decision

phase. Ultimately, through developing a framework which accounts for both tasks, modelling

DRT-MOT data can allow us to understand the differences in latent cognitive processes and

the relationship between these processes and participant behaviour.

In this chapter, I model DRT-MOT data through a joint modelling framework,

using a new sampling process to estimate parameters for two evidence accumulation models.

Evidence accumulation models of decision making are ubiquitous in decision making research

(Ratcliff, Smith, Brown, & McKoon, 2016). These models propose that for each decision,

we perceive decision relevant information (evidence) for decision options which accumulates

towards a boundary. Once we have accumulated evidence up to the decision boundary, we

then execute this response. This processes has a mathematical theory driven background,

however literature has provided evidence for evidence accumulation-like processes within

neural data (Forstmann et al., 2010, 2008; Ratcliff, Hasegawa, Hasegawa, Smith, & Segraves,

2007; van Maanen et al., 2011).

For the DRT, I fit a single bounded diffusion model (Heathcote, 2004), where, upon

the onset of DRT stimulus elicitation, evidence accumulates towards a single response thresh-

old. Participant response time is determined by the time taken from the stimulus onset to

the response threshold with additional time for non-decision processes (i.e. perception, mo-

tor execution etc) (Anders, Alario, Van Maanen, et al., 2016; G. Hawkins & Heathcote,

2019; Heathcote, 2004). The rate at which evidence accumulates (i.e. fast or slow) and

the setting of the threshold (i.e. more or less cautious) are key components in determining

the decision time (Matzke & Wagenmakers, 2009; Ratcliff & Strayer, 2014). For the MOT,
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a racing evidence accumulation model is fit, where for each decision in the interrogation

phase, an accumulator for each response (indicating whether or not an object was a target)

races towards a threshold. Whichever accumulator reaches the threshold first is the “win-

ning” accumulator, and the corresponding response is made(S. Brown & Heathcote, 2005;

S. D. Brown & Heathcote, 2008) – for example, in the MOT, there are accumulators for both

“yes” and “no” responses, so subsequently, if a “no” response is made, this represents the

accumulator which first accumulated evidence to the boundary. Participant response time

is made up of decision time (i.e. evidence accumulation to threshold) and non-decision time

(S. D. Brown & Heathcote, 2008).

Similar to other evidence accumulation modelling studies such as memory, where

strength of the memory trace manifests in drift (Osth, Jansson, Dennis, & Heathcote, 2018;

Ratcliff, Thapar, & McKoon, 2011), and preferential decision making, where utility is closely

related to drift (G. E. Hawkins et al., 2014), Innes and Kuhne (2020) attempt to map tracking

of the target objects on the speed of evidence accumulation (where successful tracking leads to

faster processing). Further, Innes and Kuhne (2020) show there is a bias to responding due

to unequal response proportions. In the MOT paradigm, there are fewer “yes” responses

compared to “no” responses – In the 0 dot condition, 0% of responses should be “yes”

responses, in the 1 dot condition, 10% of responses should be “yes” responses and in the 4

dot condition, 40% of responses should be “yes” responses. This bias is accounted for in the

threshold parameter, where threshold is lower for more likely responses – for example, in the

1 dot condition, the “no” response is much more likely than a “yes” response (9:1) and so

the threshold for “no” responses is adjusted to be lower than the “yes” response. Finally, in

jointly estimating parameters from both models, the covariance matrix (i.e. the correlation

between the parameters within the model) constrains the parameter estimates. From this,

inferences can be made about the interaction between parameters of the two models. This

“joint” modelling aspect will be further explained below. By building this framework, I

propose a method to assess latent variables which contribute to participant behaviour, and

see how these latent variables interact.

The following sections detail the background for methodology, models for both com-

ponents of the DRT-MOT task and the general sampling procedure before explaining the

joint modelling framework.
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7.1.1 Accumulator Models of Decision Making

Evidence accumulation models of decision-making are increasingly used as psycho-

metric tools to differentiate between latent cognitive processes between groups, individuals

and settings. The Linear Ballistic Accumulator (LBA: S. D. Brown & Heathcote, 2008) and

Drift Diffusion Model (DDM: Ratcliff & Rouder, 1998) are two examples of evidence accu-

mulation models of simple decisions. These two prominent models began as theoretical tools

to understand the processes which underpinned simple decision making - such as perceptual

discrimination tasks. However, in recent years, these models have shown applicability to a

number of other research questions – including explaining differences in decision making for

clinical populations (e.g. people with schizophrenia (Matzke, Hughes, Badcock, Michie, &

Heathcote, 2017), ADHD (Weigard & Huang-Pollock, 2014) and people with depression (Ho

et al., 2014)), between groups (e.g. between older and younger adults (Ratcliff, Gomez, &

McKoon, 2004; Ratcliff, Thapar, & McKoon, 2007) and linking to IQ scores (Ratcliff, Thapar,

& McKoon, 2010)), between environments (e.g. in and out of a fMRI scanner (Forstmann et

al., 2008)) and between tasks (e.g. Lerche and Voss (2017) investigated parameter differences

of a lexical decision task to a recognition memory task and Hedge, Vivian-Griffiths, Powell,

Bompas, and Sumner (2019) compared parameters between Flanker, Stroop and random dot

motion tasks). The methodology of these latter examples shows similarities to DRT-MOT

experiments.

In addition to the expanding range of tasks modelled under evidence accumula-

tion frameworks, there have been increasing attempts to model multiple tasks together to

understand the relationship or correlations between latent processes involved across tasks

or domains (Forstmann & Wagenmakers, 2015; Turner, Forstmann, Steyvers, et al., 2019).

These “joint models” are motivated by the goal of a more complete model of human cognition,

which encompasses the entire task space, rather than focusing on one specific component,

hence acknowledging that the tasks being studied involve processes operating together, not

separately. Joint models are made more accessible and appealing through broader data,

higher computer resources and new computational methods (Turner et al., 2019). Joint

modelling often refers to neuroscientific data, where neural data (from fMRI or EEG) is

modelled along with behavioural data as a means of utilising both outputs and understand-

ing the links between them – i.e. modelling behavioural data affords insight to underlying
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cognitive processes and modelling neural data lends insight into the structures and physiol-

ogy which may be related to behaviour (Forstmann & Wagenmakers, 2015; Palestro et al.,

2018). There now exists a range of linking methods for joint modelling, including directed

mapping of neural data to inform parameters (or vice-versa) and covariance approaches (for

more information see de Hollander, Forstmann, and Brown (2016) and Turner et al. (2019)).

Further, joint modelling of behavioural data from multiple tasks can be used to evaluate

correlations between tasks, task trade off and estimate similarity of parameters across tasks

using a covariance approach (Wall et al., 2019).

Take for example Wall et al. (2019), who used a joint modelling technique to assess

model parameters across tasks and contexts. In their first analysis, the researchers modelled

data from Forstmann et al. (2008) collected both in and out of a scanner (for methods see

Forstmann et al. (2008) and Wall et al. (2019)). The researchers found that the parameters

varied in a similar fashion across contexts, and further, showed parameter correlations where

they would be expected (for example, the non-decision time parameter was related between

contexts). In the second analysis, Wall et al. (2019) investigated three cognitive tasks – a

stop-signal task, a visual search task and a match-to-memory task. The LBA was fit to each

task within a joint model framework. From this analysis, correlations between parameters of

the LBA were shown across tasks, which enables an understanding of common or divergent

processes between tasks – for example, non-decision time correlated across tasks with similar

response rules and threshold parameters showed correlations across tasks. This type of across

task modelling may assist in understanding common cognitive processes between tasks and

individuals.

Innes and Kuhne (2020) present a LBA model application to decision-making data

from the MOT task (the data is the same shown in Chapter 6). In this paper, the authors

showed evidence for performance differences between a military group and undergraduate

control group – where the military group were more accurate, a result which was largely

underpinned by the military group setting closer-to-optimal levels of caution. There is scope

to improve the analysis by Innes and Kuhne (2020) by incorporating data from the DRT

into a joint model framework. This analysis has strengths in that it accounts for the whole

task space, meaning a model could highlight trade-off and correlation between tasks. More
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importantly however, a model incorporating both aspects of the DRT-MOT paradigm could

form a fundamental joint model framework for modelling dual-task workload measures.

7.2 Applications and Methods

In Chapter 6, I outlined a method using results from the DRT-MOT to inform an

estimate of cognitive workload “ability”, where two groups were compared to identify high-

performing individuals. It was evident from the results that this estimate may be affected

by individual subject effects – such as the strategy each person used, their level of focus

and potential variance in non-decision time processes. In the current chapter, using data

from Experiment 4, I conduct a similar analysis to that used by Wall et al. (2019), to jointly

estimate parameters of the DRT-MOT task between the RAAF and student groups. For

the DRT component of the framework, I fit a shifted-Wald model to the response time

distributions, and for MOT decisions, I fit a LBA model to responses (similar to that used

by Innes & Kuhne, 2020). I do this through a Particle-Metropolis within Gibbs (PMwG)

sampling method, which enables parameters across the two models (i.e. shifted-Wald and

LBA) to be estimated together. Through joint estimation of the models, group differences

and parameter correlations can be estimated unbiasedly and robustly. This joint model

framework is made possible through the PMwG sampler, and is an important primary step

towards a more holistic cognitive account of dual-task workload paradigms.

7.2.1 PMwG Model Based Sampling

Wall et al. (2019) extended on a new method of model based sampling to estimate

parameters within a joint model framework, as outlined in Gunawan, Hawkins, Tran, Kohn,

and Brown (2020). This approach used a PMwG sampler in order to estimate parameters

of hierarchical models more efficiently than previous Markov chain Monte Carlo sampling

methods. Previously, techniques such as Differential Evolution Markov chain Monte-Carlo

(Turner, Forstmann, et al., 2013) have been used to estimate such hierarchical models (i.e.

accounting for group-level – parameter – estimates as well as individual – random effect –
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estimates). The PMwG sampling method also estimates parameter via Markov chain Monte-

Carlo, however, the sampling approach is more efficient and robust, allowing exploration of

more complex models.

Similar to Wall et al. (2019), I use the methodology of Gunawan et al. (2020), with

sampling conducted using the pmwg R package (https://CRAN.R-project.org/package=

pmwg), and guided by the Wall et al. (2019) extension, where parameters for each model (i.e.

per task) are combined to form a single parameter vector α, across tasks. This approach

means that a greater number of parameters are estimated, however, with PMwG sampling,

this is not problematic. In estimating parameters across tasks, there is an inferred relation-

ship between task parameters, and so data from both tasks is used to inform the the whole

parameter space. This relationship is implied by the assumption of a multivariate normal

distribution for the random effects, with the relationships between parameters captured by

the off-diagonal elements of the covariance matrix (Σ). This structure means that we can

observe correlations in parameter estimates within, and between, model components.

The two model components and associated parameters are outlined below.

7.2.2 Modelling Decisions of the MOT

To model decisions in the MOT, I followed the LBA structure as specified by Innes

and Kuhne (2020). This model included a mean drift rate within conditions for correct

responses (i.e. responding “target” when the interrogated dot was a target had the same drift

rate as responding “non-target” when the dot was not a target) and a singular error drift rate.

Drift was denoted vc for correct and ve for the error drift parameter. I estimated one ve for

two reasons; there was limited data in each condition for error responses and to constrain the

model (following recent findings from Evans (2020) regarding model identifiability). There

were two thresholds estimated for each condition of MOT difficulty – for responding “non-

target” – denoted bNT – or responding “target” – denoted bT . Each difficulty condition

included a mean threshold (b0, b1, b4) and a bias parameter b. The threshold bias parameter

decreased threshold for “non-target” responses in lower difficulty conditions as the proportion

of correct responses was uneven (i.e. “non-target” was the correct response nine out of

ten times in the one dot to track condition). Ultimately, this resulted in four threshold
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parameters to be estimated – b (the bias parameter), b0, b1, b4 (the threshold for each

difficulty, where adding or subtracting b gave the “target” or “non-target” response thresholds

respectively). Three other parameters were also estimated: non-decision time T0, the uniform

distribution of start points A and the correct drift error value sv. These parameters result

in a total of 11 parameters to be estimated (A, b, b0, b1, b4, T0, v
0
c , v

1
c , v

4
c , ve, & sv).

7.2.3 Modelling Responses to the DRT

There have been several recent efforts to fit evidence accumulation models to stimulus-

response tasks (such as the DRT) in order to estimate latent variables. Ratcliff and Strayer

(2014) modelled the closely-related psychomotor vigilance task (PVT) using an evidence

accumulation model of “decision making”, where evidence accumulates towards a single

boundary (similar to the DDM, where evidence accumulates towards one of two boundaries).

Similarly, Tillman, Strayer, Eidels, and Heathcote (2017) fitted a shifted–Wald model to DRT

decisions, which followed the same principles. The shifted–Wald model is identical to a one

boundary diffusion model, where evidence accumulates to a response triggering threshold

and the skewed distribution of these response times is shifted by non-decision time. These

models tend to have three key parameters – similar to the LBA – which include a drift

rate (or rate of accumulation of evidence), a threshold (or decision boundary indicating the

level of caution) and a non-decision time (which relates to the time taken to perceive and

encode information as well as the time taken to execute the response). Castro et al. (2019)

extended on this model, using a Wald-distributed evidence accumulation model which was

augmented by an omission probability parameter. In DRT paradigms omissions may help

inform cognitive workload estimates, and so including this data in the model may capture

key trends that would otherwise be discarded.

From the above examples, several common phenomena are observed. As task diffi-

culty increases, drift rate tends to slow. Drift rate effects are theorised to be linked with the

limitations of human cognition, where occupying more resources causes resource depletion

elsewhere (Castro et al., 2019). For example a highly demanding driving task may cause

depletion of resources for DRT responding. Another common trend observed is threshold

variance, where as caution increases, threshold increases (Rae, Heathcote, Donkin, Averell,
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& Brown, 2014; Ratcliff et al., 2016). For example, in a difficult driving scenario, a driver

may become more cautious, consequently delaying action as they gather more evidence.

These phenomenon are commonly observed in models of simple decision making.

Drift rate effects are often observed when higher task difficulty has an impact on how quickly

we are able to process evidence for either choice (Donkin, Brown, Heathcote, &Wagenmakers,

2011; Howard et al., 2020; Ratcliff et al., 2016). Threshold effects are often observed when

participants are instructed to respond with less, or more, caution, or are given deadlines

(where shorter deadlines force participants to be more speedy) (Forstmann et al., 2008;

Karşılar, Simen, Papadakis, & Balcı, 2014; Rae et al., 2014). Similarly, in stimulus-response

paradigms, difficulty of the task (for example difficulty in perceiving the stimuli as in Howard

et al. (2020)), or difficulty of the concurrent task (such as driving in Castro et al. (2019)),

is associated with slower drift rates. These findings regarding drift rate suggest that drift

may also be closely associated with cognitive workload. Thorpe et al. (2020) showed similar

results, noting a change in drift rate as a result of difficulty, but no threshold effects or

effects of differing DRT stimulus modality. Alternatively, cognitive workload may impact

on an individuals strategy when responding, as Tillman et al. (2017) found. Tillman et al.

(2017) modeled DRT responses in relation to conversations with a passenger while driving.

In conditions where individuals were in conversation with passengers, Tillman et al. (2017)

showed that threshold increased. This result suggests that increased workload may affect

the individuals level of caution, which may vary between individuals.

In the current model application, I model DRT data from Experiment 4 by fitting

a shifted–Wald model to participant response times. The shifted–Wald model fitted here

also includes a “trigger failure” weighting parameter – similar to Castro et al. (2019). In

the DRT, a miss is classified as a failure to respond before the next onset of the DRT

signal or any response greater than 2.5 seconds from stimulus onset. In DRT modelling

literature, there are two contrasting views on the cause of missed trials: failure to reach

threshold or trigger failures. The failure to reach threshold account posits the idea that in

trials where participants fail to respond, their accumulation of evidence never reaches the

response boundary. In this case, responses could occur at any time in the future, tending

towards infinity. Analysis following this theory means misses are removed from the modelling

analysis (Howard et al., 2020). The trigger failure account however, posits the idea that on
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a proportion of trials, participants fail to start accumulating evidence (Castro et al., 2019).

The trigger failure parameter is modelled in a mixture distribution framework, where misses

are assigned the trigger-failure estimate and provide a weight on the response likelihoods for

hits (i.e. p(x|θ) × (1 − pr(TF )), where p(x|θ) is the density of the observed data x given

the model parameters θ and pr(TF ) is the probability of a “trigger failure”). Castro et al.

(2019) show evidence against the “failure to reach threshold” account, noting that this would

be observed by less right-skewed response time distributions. Further, Castro et al. (2019)

show that responses after 2.5 seconds are less likely than miss proportions suggest.

Drawing on previous modelling studies employing this practise, I fit a shifted–Wald

model with eight estimated parameters. These parameters included the threshold parameter

b, drift rate parameter v (one drift for each difficulty), trigger failure weighting parameter

f (one for each difficulty) and a non-decision time parameter (i.e. the “shift” for the Wald

model) T0. This gave the vector of eight parameters to be estimated: (b, v0, v1, v4, T0, f0,

f1 & f4).

7.3 Joint Modelling of Experiment 4

A joint modelling approach (as used in Wall et al., 2019) was used for the DRT-

MOT paradigm in Experiment 4. Parameters were estimated for the MOT (using the LBA

model) and the DRT (using the shifted–Wald model) as outlined above. The full vector

of 19 (log-transformed, except for probability parameters f which were probit-transformed)

parameters was estimated per participant as a random effect vector, with a multivariate

normal prior distribution assumed across participants. The prior for the mean vector of

the multivariate normal distribution follows Wall et al. (2019), where I assume this vector

is another multivariate normal distribution with a mean of zero and covariance matrix as

the identity matrix. The prior for the covariance matrix followed that of Huang and Wand

(2013), a mixture of inverse Wishart distributions whose mixture weights were according to

an inverse Gaussian distribution. We used settings as specified by Huang and Wand (2013),

and by extension Gunawan et al. (2020) and Wall et al. (2019), as these lead to marginally

uninformative priors on correlations coefficients. All other PMwG sampling details using the

PMwG are according to those in Gunawan et al. (2020).
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7.3.1 Results

7.3.1.1 Model Descriptive Adequacy

Figures 7.1 and 7.2 show the fit of the joint model for both RAAF and Student

data (which were fit independently). Evidently, for both groups, DRT RTs and accuracy

are well described by the shifted–Wald model component, while the LBA described MOT

decisions well for most conditions. A slight misfit was observed for “yes” responses in the

1 dot condition, where the model underestimates RAAF and student performance, likely

due to the low number of responses observed. This misfit is similarly observed in Innes and

Kuhne (2020). Further, the model slightly overestimates RT and accuracy in the MOT for

“yes” responses in the 4 dot condition. Further plots of model fit can be seen in Appendix B.

Figure 7.1: Descriptive adequacy of the model for RAAF data from Experiment 4. The
means from the 20 posterior predictive samples are shown as circles, and the data is plotted
as bars. The top row shows DRT data (RT and hits) and the bottom row shows MOT data
(RT and accuracy). The top row shows difficulty level across the x-axis, and the bottom
row shows difficulty as facets, with response type (“yes” or “no”) on the x-axis.
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Figure 7.2: Descriptive adequacy of the model for student data from Experiment 4. The
means from the 20 posterior predictive samples are shown as circles, and the data is plotted
as bars. The top row shows DRT data (RT and hits) and the bottom row shows MOT data
(RT and accuracy). The top row shows difficulty level across the x-axis, and the bottom
row shows difficulty as facets, with response type (“yes” or “no”) on the x-axis.

7.3.1.2 Model Results

Table 7.1 shows the posterior estimates for each group across models. Each row

shows the mean (and 95% credible interval) of the group level parameters for each task

(DRT by shifted–Wald and MOT by LBA), observed from 5,000 posterior samples using the

PMwG sampler.

For both groups, shifted–Wald drift and LBA correct drift declines as difficulty

increases. This drift effect is expected, with the difficulty level likely affecting the quality of

evidence accumulated. As noted in Innes and Kuhne (2020), this effect of difficulty shares

parallels with response time modelling in memory research in that the memory trace, or in

the MOT the “target trace”, drives drift rates. In the memory domain, a stronger memory

trace underpins faster drift rates, leading to faster, more accurate responses. In the MOT, a

strong target trace, for example when the single target has been easily tracked throughout

the trial, would drive faster drift rates for “target” responses, whilst the inverse (i.e. all
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distractors in this example), would drive faster “non-target” responses. In more difficult

conditions (i.e. more objects to track), this trace weakens as targets are lost or uncertain,

leading to slower, less accurate responses.

Table 7.1: Mean (and 95% credible intervals) of the estimated posterior distributions for
the shifted–Wald and LBA parameters from Experiment 4. Parameter values are shown as
“untransformed” for ease of interpretation. Estimates are rounded to two decimal places,
except in instances of ambiguity.

RAAF Students
shifted–Wald

b 0.99 (0.90 , 1.09) 0.86 (0.79 , 0.93)
v(0) 5.81 (5.39 , 6.22) 4.44 (4.13 , 4.76)
v(1) 4.06 (3.78 , 4.34) 3.30 (3.10 , 3.51)
v(4) 3.38 (3.14 , 3.68) 2.73 (2.55 , 2.92)
T0 0.17 (0.16 , 0.18) 0.17 (0.16 , 0.19)
f (0) 0.0006 (0.0002 , 0.0013) 0.005 (0.002 , 0.009)
f (1) 0.002 (0.001 , 0.005) 0.015 (0.010 , 0.023)
f (4) 0.008 (0.004 , 0.013) 0.028 (0.018 , 0.040)

LBA

A 0.21 (0.15 , 0.28) 0.17 (0.13 , 0.24)
b 0.97 (0.90 , 1.05) 0.75 (0.66 , 0.84)
b(0) 1.29 (1.10 , 1.49) 0.96 (0.87 , 1.05)
b(1) 0.75 (0.71 , 0.78) 0.74 (0.71 , 0.78)
b(4) 0.54 (0.51 , 0.57) 0.60 (0.57 , 0.64)
T0 0.05 (0.04 , 0.07) 0.03 (0.02 , 0.04)

v
(0)
c 2.32 (1.97 , 2.69) 2.33 (2.03 , 2.67)

v
(1)
c 2.19 (2.06 , 2.32) 1.78 (1.66 , 1.91)

v
(4)
c 1.40 (1.30 , 1.50) 1.21 (1.12 , 1.31)
ve 0.09 (0.07 , 0.13) 0.07 (0.06 , 0.10)
sv 0.74 (0.70 , 0.78) 0.68 (0.63 , 0.73)

Similarly, the f parameter estimates for the DRT increase as difficulty increases,

showing that omissions become more likely in harder tracking conditions. This is a similar

finding to work by Castro et al. (2019), and shares parallels with the drift effect. Trigger

failures are responses where the accumulator fails to start, and henceforth an omission occurs.

In the DRT-MOT, the increase in DRT trigger failures with increasing difficulty could be

the result of higher workload, where a lack of attentional resources leads to instances where

participants fail to detect the stimuli or trigger response mechanisms, as they are focused on

tracking.
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Finally, the b bias parameter reliably declines as difficulty increases, which is in line

with expectations given the probability of alternate responses for each condition. Recall

that the b bias parameter is either added to or subtracted from the threshold parameter

for the “target” or “non-target” accumulators respectively to account for the probability of

responses. For example in the 1 dot condition, “non-target” responses account for 90% of

the data, whereas in the 4 dot condition, “non-target” responses account for 60% of the data,

hence a bias is present, making the “no” response more likely in lower difficulty conditions.

Mean parameter estimates reflect this intuition, with both groups showing a decrease in the

level of bias as response proportions tend towards evenness.

Between groups, there are several notable findings (which can be seen in Appendix B

Figure B.4 for group differences in the shifted-Wald and Figure B.5 for group differences in

the LBA). To assess differences between groups, I compared 95% credible intervals for each

parameter – as shown in parentheses in Table 7.1. In the DRT component, the RAAF

personnel set more cautious thresholds, but have much higher drifts – in fact drift rates for

the RAAF in the hardest (4 dot) condition are similar to students’ drift rates in the less

difficult (1 dot) condition. The RAAF group also have far fewer trigger failures. Parameter

estimates from the shifted–Wald model component highlight that overall, the RAAF are

simply better than students at the DRT – RAAF participants able to show greater caution to

the signal, but also a greater processing speed of information. However, the LBA component

must also be accounted for to understand the between task dynamics across groups.

In the LBA component of the model, group differences are less evident. Drift rates

and non-decision times are comparable between the groups. The main difference student

and RAAF groups is observed in the threshold parameter estimates. RAAF participants

appear to set higher overall thresholds, as indicated by the b parameter. The magnitude of

difference between the thresholds of competing accumulators, indicated by the b-bias param-

eters, appears to have an interaction effect with participant groups, where the RAAF group

set higher thresholds in the 0 dot condition, but lower thresholds in the 4 dot condition.

This threshold magnitude result implies more optimal responding (due to uneven response

proportions) by the RAAF group, who show a greater threshold change than students across

difficulty levels – that is, in easy conditions, RAAF participants are less cautious for more

probable (“non-target”) responses and more cautious for less probable decisions (“target”),
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and in hard conditions, the RAAF group are similarly cautious for the similarly probable

responses. The student group do not appear to be as sensitive to this response probability

change and consequently adjust their thresholds less across difficulty conditions. Further, the

RAAF group show higher correct drift rates in the 1 and 4 dot conditions, which, when cou-

pled with their more optimal threshold setting, indicates the key mechanisms underpinning

their superior performance: set optimal caution levels and have higher processing ability.

Overall, it is clear that the RAAF group outperform the student group, and these

mean parameter estimates provide an indication as to what processes underlie this behaviour.

In addition to these findings, the “joint” component of the dual-task paradigm is important

in understanding parameters that are related or traded off between tasks. Table 7.2 shows the

lower rectangles of the covariance matrices for each group – i.e. the parameter correlations

between tasks (Appendix (B) tables show the full covariance matrices for each group). Evi-

dently, there are only several parameters which reliably correlate between the tasks, however,

these can inform the model outcomes.

Table 7.2 shows that in the LBA (rows), correct drift correlates positively with drift

estimates from the shifted–Wald (columns). Further, correlations are also observed between

LBA correct drift and shifted–Wald trigger failures, showing that when drift in the MOT is

high, participants exhibit lower misses in the DRT. Appendix B furthers the validity of this

analysis, with strong covariances shown within component parameters; i.e. LBA parameters

correlate with LBA parameters.

Between groups, the trigger failure parameter appeared to have stronger negative

correlations with LBA error drift for the student group than the RAAF group. This negative

correlation means that error drift rates increased with less trigger failures and vice-versa, in

what could be some form of task trade-off as expected (i.e. if a participant is concentrating

on the DRT, they would have less trigger failures, but may have more MOT errors). This

could indicate further differences between the groups, where the RAAF participants were able

to trade-off between tasks without losing key information. The correlation in shifted-Wald

non-decision time and LBA correct drift (particularly in the 4 dot condition) for the RAAF

group, may also be indicative of differences between the groups in levels of engagement. The

correlation is lower in easier conditions, however, this could be the result of more accurate

drift estimation in this condition, compared to the 0 and 1 dot conditions, which have limited
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responses for some design cells. This is predominantly observed in the RAAF group, which

could suggest the RAAF group show more similar performance.

Table 7.2: Mean estimates for the lower rectangle (shifted–Wald with LBA parameters) of
the correlation matrix from Experiment 4. Reliable estimates are shown in bold - meaning
that generally the distribution of correlation values for these parameters did not cross zero.
The full correlation matrices can be seen in Appendix B.

RAAF

B v(0) v(1) v(4) T0 f (0) f (1) f (4)

A 0.07 0.01 -0.07 -0.13 -0.02 0.04 0.08 0.11
b 0.12 0.12 0.08 0.02 -0.08 0.08 0.11 0.11

b(0) -0.08 -0.03 -0.02 0.02 0.03 0.12 -0.06 -0.11
b(1) -0.04 -0.13 -0.15 -0.12 0.02 0.09 0.11 0.06
b(4) -0.02 0.05 0.02 -0.01 0.15 0.02 0.04 0.08
T0 -0.11 0.14 0.08 0.03 0.14 -0.13 -0.12 -0.07

v
(0)
c 0.05 -0.05 -0.05 -0.11 -0.04 -0.08 0.13 0.14

v
(1)
c 0.11 0.08 0.13 0.09 -0.15 -0.03 -0.02 -0.09

v
(4)
c 0.29 0.29 0.33 0.27 -0.25 -0.17 -0.22 -0.17
ve 0.07 0.10 0.11 0.09 -0.07 0.06 -0.01 -0.02
sv -0.05 -0.03 -0.04 -0.12 0.03 0.07 0.13 0.08

Student

B v(0) v(1) v(4) T0 f (0) f (1) f (4)

A 0.15 0.15 0.03 0.07 -0.07 -0.21 -0.06 0.03
b 0.12 0.15 0.02 -0.11 0.04 -0.12 -0.04 -0.07

b(0) -0.03 0.06 0.06 -0.05 0.18 -0.06 -0.07 -0.13
b(1) -0.09 0.05 0.04 0.06 0.07 -0.10 0.03 -0.04
b(4) -0.22 -0.13 -0.20 -0.05 0.06 0.17 0.22 0.18
T0 -0.05 0.09 0.16 0.04 0.11 0.15 -0.04 -0.15

v
(0)
c 0.14 0.18 0.03 0.07 -0.19 -0.14 -0.04 0.04

v
(1)
c 0.23 0.30 0.23 0.08 -0.04 -0.19 -0.17 -0.11

v
(4)
c 0.16 0.20 0.22 0.09 -0.03 -0.17 -0.12 -0.13
ve 0.21 0.33 0.30 0.28 -0.07 -0.35 -0.26 -0.26
sv -0.04 0.13 0.03 -0.02 0.12 -0.17 -0.17 -0.11

7.4 Discussion

Using the methods developed by Gunawan et al. (2020) and Wall et al. (2019), I

apply a joint modelling framework to data from the DRT-MOT task. This is a novel analysis

approach for MOT data and, with the integration of the DRT task, shows a comprehensive

insight into the latent cognitive processes which underpin task performance and workload
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allocation. In jointly estimating parameters for respective models, I provide a method to

jointly model dual-task workload measures. This enables us to investigate parameter changes

related to MOT difficulty levels for both tasks, as well as the trade-off between tasks and

the correlation between model parameters. Thus, this analysis goes beyond the depth of

previous chapters, in that I am able to simultaneously account for performance across both

tasks and the latent mechanisms underpinning behavioural outcomes.

In regards to workload, and the between task trade-off, there is evidence to suggest

that some individuals are generally better at the task, optimising decisions and resource

allocation. One would expect that if attention was paid to the DRT, MOT performance would

decline – likely observed in a decreasing LBA correct drift parameter. At the same time,

we would expect that DRT performance would increase, with trigger failures decreasing and

shifted-Wald drift increasing. This is an intuitive example scenario of a between task trade-

off. Surprisingly, as results show in Table 7.2, this is not necessarily the case, but rather the

opposite appears to occur. Drift is positively correlated between model components, whilst

trigger failure and LBA drift are negatively correlated. This result implies that subjects with

higher drift in one task, generally show similar high performance in the other task. Further,

as performance increases in MOT, trigger failures decrease in the DRT. Correlations are also

observed between drift and non-decision times, indicating that the same underlying processes

may be responsible for these factors across tasks. This factor may relate to participant

engagement, where non-decision times are minimized as participants are more focused and

attentive.

As shown in previous chapters, results indicated differences between RAAF and stu-

dent cohorts. Interestingly, from the model, these differences were primarily observed in the

DRT task, where the RAAF group reliably showed higher drift and thresholds compared to

students. In the MOT, the RAAF group appeared to have a more optimal strategy, chang-

ing their threshold bias more substantially for responses in lower difficulty conditions, whilst

setting more even thresholds in more difficult conditions. This may benefit performance –

where response times are faster and more accurate in easy conditions and slower, but more

accurate, in harder conditions – a pattern that can be observed in Figure 6.1.

Results from the joint model indicate a positive start for this type of analysis and

show advantages over traditional dual-task workload measure analysis. Future extensions
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could address several limitations that were encountered in the present analysis and data

set. MOT response accuracy appears to follow slightly incorrect patterns for the RAAF

participants – which could be the result of limited data, as each condition had only 30

MOT trials, and further, response proportions were much lower for easier conditions (for

example in the 1 dot condition where the misfit is greatest, there is only a 10% chance

on each trial of giving a “yes” response). The MOT does appear somewhat challenging

to model – particularly as it is difficult to account for the actual tracking behaviour (i.e.

why a participant is performing poorly could depend on a range of circumstances). These

difficulties could be overcome in future by including more difficult conditions in the MOT,

including a contaminant parameter in the model, or through using another, more simple

cognitive task to manipulate workload (such as that in Thorpe et al. (2020)). Further, the

covariance matrices showed few significant correlations, meaning that generally the posterior

distribution of correlation values crossed zero, and so whilst the means suggest correlations,

these may not be statistically reliable. This result may suggest that variance within each

group was large, with minimal data across this spread, or alternately, may suggest that there

is a limited relationship between the tasks. Future simulation studies and studies with more

data in relevant conditions could address this issue, whilst future joint modelling research

should attempt to incorporate groups in the same fit.

It is also important to note however, that this model makes only predictions, drawn

from the data, about the underlying cognitive processes. Further, the current model may

be overly complex for this kind of analysis. The main factors that I am interested in here

could be reduced to drift rate and drift rate variability, meaning the LBA framework, whilst

it is able to capture all elements of the decision-making process, is overly complex. In

future research, two shifted-Wald models could be used (one for MOT and one for the

DRT) to answer more specific, workload relevant questions in regards to this type of design.

Future researchers should strongly consider their choice of models to ensure that the model

appropriately addresses their main question without over-extending. Finally, it should be

added that here, the model is not the process, but merely a description of the possible

processes, and so results should be interpreted with more caution than the data provide –

especially in regards to cognitive workload measurement.

In estimating dependent parameters between tasks, a more holistic model framework
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is explored accounting for the variance and correlations between tasks. Evidently the model

shown here provides a sound summary of the data, with parameter estimates highlighting

causes for cohort performance differences in both the DRT and MOT. Whist the covariance

analysis is somewhat limited by the data, the joint model methodology outlined here provides

a novel approach to dual-task cognitive workload measurement.
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Throughout this thesis, I have examined cognitive workload theory and measure-

ment, an important human factor in many in-lab and real world contexts. Overall, I found

that the detection response task (DRT) was a reliable measure of cognitive workload and

this held across tasks and designs. Secondly, using the multiple object tracking task (MOT)

as a manipulator of cognitive workload was effective across experiments, where increasing

the number of objects to track led to a performance decrease in tracking accuracy and

subsequent increased workload. Implementing this DRT-MOT paradigm enabled me to ex-

plore behavioural outcomes resulting from increased workload across a range of applications.

Results showed consistency across experiments; increased workload lead to lower MOT per-

formance and slower DRT response times. With the difficulty manipulation affecting per-

formance on both tasks, we can be confident in our assessment of behavioural outcomes of

cognitive workload factors. Further, results from this thesis highlight the reliability of the

DRT-MOT paradigm and the scope of cognitive workload applications.

This thesis makes several key contributions to both cognitive psychology literature

and human factors literature. In the theoretical stream, I identified a flexible, widely appli-

cable cognitive workload measure, and proposed potential applications to evaluate workload

across a range of contexts. It is evident that cognitive workload plays a role in performance

in many different fields, however, the accessibility of workload evaluation is often limited

and consequently overlooked. I initially discussed the range of cognitive workload measures

available to researchers in Chapter 2, and in Chapter 3 I provided validation for an in-lab

cognitive workload paradigm. Chapter 3 also highlighted that this DRT extension is able

to be distributed online without compromising reliability of data. In Chapters 4, 5 and

6, I implemented DRT methodology in novel environments and for novel purposes. This

allows greater insight into potentially critical human factors, and allows researchers to ask

new questions. In this methods-focused stream, I provided a framework for assessing cogni-

tive workload in new fields, such as aviation environments as shown in Chapter 5, and for

new purposes, such as evaluation of types of assistance as shown in Chapter 4 and person-

nel evaluation as shown in Chapter 6. Further, in Chapter 7, I proposed a joint-modelling

framework for dual-task cognitive workload measurement, a novel modelling application in

cognitive workload literature which enables behavioural results to be further extrapolated.

The developments in the methodology stream have the potential to broaden the uptake of
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dual-task cognitive workload measures in a range of new contexts and for a range of pur-

poses, whilst the analytical methods discussed have potential to extend the scope of cognitive

workload research.

Chapters 1 and 2 identified the importance of cognitive workload measurement,

with distracted driving research highlighting the importance of this construct. Following the

methods of Innes, Evans, et al. (2020), I showed the validity and reliability of the DRT-MOT.

Using the MOT as the main task allows participants to be “response-free”, but still requires

task engagement in tracking the objects. Further, the cognitive workload effects of the

MOT are easily manipulated, by increasing the number of objects to track. In Chapter 3,

I showed several tests of reliability and validity, which provide evidence that the DRT is

consistent across settings, and has sound external and construct validity. This is important

in extending the DRT to use in less cognitively demanding laboratory-based settings (in

comparison to highly demanding driving settings) and highlights the sensitivity of the DRT

to workload change when conditions are carefully controlled and manipulated. As noted

in Innes, Evans, et al. (2020), the DRT-MOT paradigm has potential applications, where

environmental factors could be manipulated to assess the effects of this manipulation on

task performance. However, in this thesis, I used this paradigm to highlight the scope and

applicability of the DRT and secondly, used the DRT to evaluate novel research questions -

as shown in the methodology section.

In the methodology stream, I extended tests of the reliability and usability of the

DRT to new purposes, for example in Chapter 4, assessing the effectiveness of added assis-

tance on MOT tracking accuracy. Previous uses of the DRT have tended to focus on the

effects of distraction on cognitive workload as a result of environmental factors or alternate

task engagement (Stojmenova & Sodnik, 2018; Strayer et al., 2013; Young et al., 2013). In

Chapter 4, I instead evaluated two forms of assistance which appear to be helpful for the

task, to see how these assistance types affect workload (and task performance). Results from

this study identified key patterns in data where the added assistance was either; helpful but

costly to workload or unhelpful but not costly to workload. I expect that using the DRT for

similar evaluative purposes can highlight similar patterns across environments – where useful

information is often costly to attentional resources or alternatively, not costly, but also not

useful. Ultimately, this falls on designers and researchers to identify how much these factors
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can be balanced against one another. The balance between these factors can be conceptu-

alised in Figure 8.1, where the green cell indicates an ideal cost–benefit trade–off between

workload and performance, the red cell indicates a poor example of this trade–off, and yellow

cells indicate instances in which context and environmental factors must be accounted for.

For example, in some scenarios, adding any workload to the operator may be deemed too

dangerous, whereas in other contexts, operator workload may be less crucial and performance

could be improved. Each problem poses unique implications which need to be considered

within their own context, and so whilst Chapter 4, does not provide a unified solution to this

problem, it does provide a methodology to assess such factors. Results from Chapter 4 show

a pattern consistent with the red and yellow cells (top right and bottom right quadrants) of

Figure 8.1, for the text assistance and reappearing target assistance respectively.

Figure 8.1: Table of theoretical trade-off for cost to user workload and benefit to user
task performance of added information. Green cells are optimal situations, red cells indi-
cate detrimental situations and yellow cells indicate scenarios where “optimal” is context
dependent, for example if workload is less important, then a high workload cost for a high
performance benefit is an optimal scenario.

In Chapter 5, I applied such methodology in a helicopter simulator setting to evalu-

ate the effects of heads-up display information. Results from this study showed that increased

information (3D symbology) significantly increased flight performance, and came at no sig-

nificant cost to cognitive workload, as per the bottom left (green) quadrant of Figure 8.1.

In this example, whilst the assistance does add workload, this is very minimal, and in this

context, performance (i.e. safe landing) has more value.
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In addition to these findings, Chapter 6 shows a use of the DRT to inform estimates

of individual cognitive workload ability, which could be used for personnel selection. This

cognitive workload ability is task specific, where in the DRT-MOT paradigm, if two partic-

ipants have similar performance in the MOT task, then we can infer that the participant

with better DRT performance (lower mean response time) would imply greater “cognitive

capacity”. Evidently, this assumption is subject to many other factors, such as individual

differences in non-decision time and level of caution adopted, however, it provides a useful

benchmark to compare potential candidates. In Chapter 6, I had privileged access highly

trained RAAF operators – who were used as a “benchmark” – and trainee RAAF operators

who were undergoing a selection process. Further, I tested two student cohorts (online and

in-lab), who under-performed on the task in comparison to the RAAF participants. This

provided a form of “known-groups” testing and showed group differences between the stu-

dents and the RAAF personnel for both DRT-MOT components. In a further test of task

reliability, results did not differ between testing environments (online and in-lab) for the

student group.

In an extension of the analysis from Chapter 6, I used an emerging sampling tech-

nique to jointly estimate model parameters from the task. The analysis in Chapter 7 used

the PMwG sampling method (Gunawan et al., 2020) to estimate parameters of the Shifted-

Wald model (for DRT data) and LBA model (for data from decisions in the MOT) in a joint

model framework, so that covariance could also be estimated. This allowed for a deeper

insight into latent cognitive processes and overcomes the limitation of individual strategy

and non-decision time differences outlined previously. Here, I found that the military group

outperformed the student group in both components of the DRT-MOT task and was able to

relate these performance differences to more optimal threshold setting and faster evidence

accumulation processes. Further, correlations between tasks showed evidence against a trade

off between tasks impacting performance, but rather a facilitation, where good performers

in one task often performed well in the other. This could reflect the level of engagement

or motivation experienced by participants, and could also encompass their cognitive ability.

This analysis showed correlations across tasks and differences between the groups, but most

importantly, provided a novel approach to dual-task workload measurement analysis which

accounted for both components of task.
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Although this thesis offers exciting developments in cognitive workload measure-

ment, it has several limitations. Primarily, this thesis is limited in that data is primarily

derived from the DRT-MOT paradigm, and I urge future researchers to investigate other

dual-task cognitive workload paradigms. These paradigms could include a variety of stan-

dard cognitive tasks as a means of evaluating the workload factors present; or could extend

to further practical applications. For practical applications, as shown in Chapter 5, it is

critical to have a measure of main task performance in addition to DRT data. Measuring

main task performance is important to distinguish between cells of Table 8.1, as knowing

workload outcomes alone is often not informative. Furthermore, under the joint modelling

framework established in Chapter 7, data from such real–world designs could be extrapolated

to provide greater insight into multitasking behaviour. Another limitation of this thesis is

that I predominantly rely on DRT data to estimate cognitive workload. In addition to the

aforementioned future directions, researchers may look to combine other physiological or

neural measures of workload with DRT data to increase understanding of the mechanisms

underpinning behaviour. The joint modelling framework outlined in Chapter 7 could also be

applied with other workload measures, as outlined by Forstmann and Wagenmakers (2015)

and Turner, Sederberg, Brown, and Steyvers (2013), where data from a neural model, for

example, informs the behavioural model (or vice-versa). Further, I have recently tested the

DRT as a cognitive workload measure in tandem with physiological measures of workload

(such as heart rate, blood pressure and arteriole pressure). This experiment is part of a

parallel project looking at framing of difficult scenarios, where some individuals experience

a state of threat compared to others who experience a state of challenge. Initial results show

promising links between measures, however, it is far beyond the scope of this thesis.

In summary, this thesis provides a comprehensive framework for dual-task cognitive

workload measurement, and assists in extending dual-task workload measurement purposes,

analyses and applications. Throughout the thesis I explore the applicability and usability

of stimulus response tasks (specifically the DRT) through a single framework, which is used

for a variety of purposes. This highlights the flexibility and reliability of these tasks, and

provides a platform for researchers to build on where dual-task workload measurement can be

seamlessly incorporated into future paradigms to understand workload effects. I report here

on several experimental methods, dual-task analyses and show powerful modelling techniques

– the first of their kind in dual cognitive workload literature. From this research, I have made
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a substantial contribution to the field of cognitive workload measurement, demonstrated

novel applications of these methods and tools and furthered the scope of cognitive workload

measurement.

The Candidate extends his sincere thanks to the examiner and appreciates the time they have

taken to read this thesis.
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A.1 Glossary

• Brown-out - An instance where dust from below the helicopter is disturbed and rises

to an altitude of about 120ft, thereby hampering the view for the pilot.

• Collective lever - controls the angle of the main rotor blades, allowing the helicopter

to accelerate or decelerate.

• Cyclic shaft - changes the main rotors direction in order to change the direction of

the helicopters movement.

• FLIR - Forward looking infrared radar. A sensor system that uses infrared light to

see at night.

• Ground Speed - the speed (in knots) that the aircraft is travelling in reference to the

ground

• HUD - Heads-up display. The information presented in the HUD is overlaid over the

environment so that they do not have to shift gaze to perceive the stimulus.

• Landing zone (LZ) - a designated point on the map where pilots were to land. The

landing zone was clearly marked in the symbology, on the map and by objects in the

environment (i.e. the centre of a football field).

• Radalt - Radar altimeter measures altitude above the terrain that is currently beneath

the aircraft.

• LIDAR - Light detection and ranging. A sensor system that uses pulses of laser light

to measure variable distance to the ground.

• Roll - The degree of sideways movement in the aircraft

• Pitch - The degree of forward and back movement of the aircraft

• Symbology - The information given to pilots within their heads up display. Includes

general flight metrics and more advanced environmental information.
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A.2 Full Flight Path

Pilots were seated in the simulator and fitted with the visor and DRT’s tactor patch.

They were given instructions for responding to the DRT, and for completing the flight task.

Three experimenters were present to collect data, with one experimenter collecting DRT

data, another updating the parameters of the simulator, and a supervisor. An additional

pilot was also present, navigating the participant through the flight as required. Pilots were

instructed in the symbology presented in the 3D-symbology condition, and were given time

to acclimate with the system. Before the flight commenced, the pilot was given a practice

block of DRT trials to familiarise themselves with the stimulus and response button.

In the Day condition, visibility was set at 12,000m, time of day was set at 16:00,

FLIR and dust were off. In the Night condition, FLIR was on and was set at 20:00 with

FLIR visibility at 2,400m. General visibility in this condition was set at 12,000m, time of day

was set at 20:00 and dust was off. In the Low Visibility, Dust condition, the dust appeared

at 100m from the ground. Visibility in this condition was set at 1,200m, time of day was set

at 16:00, dust was on and FLIR was off.

The flight task was divided into six sections. Way points were placed throughout

the map to indicate the key points. Way points were marked on the control panel map and

indicated in the symbology (for both 2D and 3D conditions). Section 1 required the pilots

to take off from a designated helipad and fly to two waypoints, designated Way-point A and

Way-point B. In Section 2, pilots landed at their first LZ, designated LZ 1, which was a flat

sandbank. Pilots encountered brownout during this landing. Brownout began at 100ft, with

a simulated brownout fully engulfing the virtual aircraft to restrict view by roughly 60ft.

Section 3 was a second flight section, in which pilots followed a river through a valley to

Way-points C and D, marked on two bridges along the valley, and Way-point E, marked on

a church at the end of the valley. Pilots were given ideal speed and height levels of 80kn and

200ft, and instructed to fly as close to these levels as possible during this section. Section

4 required pilots to descend to a LZ, designated LZ 2, which was marked on a triangular

brown field. Pilots were instructed to “go around” or abort the landing at height of 20ft.

Going below this set altitude in a real-world scenario would be potentially dangerous and

could compromise mission objectives. As with LZ 1, pilots encountered brownout, which
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was removed when pilots cleared power lines located behind LZ 2. Section 5 was the final

flight section, in which pilots ascended and descended a mountain, flying towards Way-point

G nearby the take-off helipad. Section 6 was the final landing on the flight deck of a Nimitz-

class aircraft carrier. The LZ, designated LZ 3, was the junction of the centre lines of the

carrier’s straight runway and angled runway. The full flight took approximately 13 minutes

to complete. Pilots were seated in the simulator and fitted with the visor and DRT’s tactile

patch. They were given instructions for responding to the DRT, and for completing the flight

task. Three experimenters were present to collect data, with one experimenter collecting DRT

data, another updating the parameters of the simulator, and a supervisor. An additional

pilot was also present, navigating the participant through the flight as required. Pilots were

instructed in the symbology presented in the 3D-symbology condition, and were given time

to acclimate with the system. Before the flight commenced, the pilot was given a practice

block of DRT trials to familiarize themselves with the stimulus and response button. Pilots

were instructed to begin the flight upon responding to the first DRT stimulus they perceived.

After completing the first two sections, including landing at LZ 1, pilots were instructed to

take off and continue the flight after several seconds on the ground (following standard flight

procedures). They then completed the last four sections of the flight.

A.3 Symbology Conditions

• No symbology: In this condition, the pilot was equipped with the HUD headpiece (as

shown in Figure A.1, however, it was turned off so that pilots could still see the full

disply with no extra visual information.
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Figure A.1: An example of the simulator setup. The pilot has the head piece attached
which displays the HUD information over the simulated environment. In front of the pilot
are the electronic map and a multi-function display, which indicated altitude, ground speed,
collective power and helicopter roll.

• 2D: In the 2D condition, pilots were equipped with the HUD headpiece which displayed

several metrics in their visual field. These metrics included radial altitude, ground

speed, heading, distance & direction to the landing zone. An example screenshot can

be seen in Figure A.2.
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Figure A.2: An example of the projections for the 2D symbology condition. The infor-
mation shown on screen was projected to the HUD in the headpiece worn by the pilot.

• 3D: In the 3D condition, pilots were equipped with the HUD headpiece which displayed

several metrics in their visual field, as well as overlaying 3D visual information to the

simulated environment. These metrics included radial altitude, ground speed, heading,

distance & direction to the landing zone. The 3D information also given to pilots

included 3D mapping of landing zones (as seen in Zimmermann et al. (2019)), flight

path direction, and visual indication of obstacles (such as buildings and power lines;

as shown in Figure A.3).
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Figure A.3: An example of the projections for the 3D symbology condition. The infor-
mation shown on screen was projected to the HUD in the headpiece worn by the pilot.
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B.1 Further Plots of Descriptive Adequacy

Figure B.1: Median, 5% and 95% DRT response times across subjects from posterior
predictive data (y-axis) and observed data (x-axis) between groups.
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Figure B.2: Median, 5% and 95% MOT response times across subjects from posterior
predictive data (y-axis) and observed data (x-axis) between groups.

Figure B.3: Median MOT accuracy across subjects from posterior predictive data (y-axis)
and observed data (x-axis) between groups.
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B.2 Further Plots Model Results

Figure B.4: Violin plots for group level parameter estimates from the shifted-Wald across
groups. Parameters are shown across the x-axis. Estimates are shown as the log of the
estimated value (except for the go-failure parameters, estimated according to a probit
estimation).



Figure B.5: Violin plots for group level parameter estimates from the LBA across groups.
Parameters are shown across the x-axis. Estimates are shown as the log of the estimated
value.
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